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ABSTRACT
There is much recent work on detecting and tracking change
in clusters, often based on the study of the spatiotemporal
properties of a cluster. For the many applications where
cluster change is relevant, among them customer relation-
ship management, fraud detection and marketing, it is also
necessary to provide insights about the nature of cluster
change: Is a cluster corresponding to a group of customers
simply disappearing or are its members migrating to other
clusters? Is a new emerging cluster reflecting a new target
group of customers or does it rather consist of existing cus-
tomers whose preferences shift? To answer such questions,
we propose the framework MONIC for modeling and track-
ing of cluster transitions. Our cluster transition model en-
compasses changes that involve more than one cluster, thus
allowing for insights on cluster change in the whole clus-
tering. Our transition tracking mechanism is not based on
the topological properties of clusters, which are only avail-
able for some types of clustering, but on the contents of
the underlying data stream. We present our first results on
monitoring cluster transitions over the ACM digital library.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data Mining; I.5.3
[Pattern Recognition]: Clustering

General Terms: Algorithms, Theory

Keywords: Cluster change detection, cluster transitions,
data streams, clusters, temporal analysis

1. INTRODUCTION
Clusters upon the data of many real applications are af-

fected by changes in the underlying population of customer
transactions, user activities, network accesses or documents.
Much research has been devoted in adapting the clusters to
the changed population. Recently, research has expanded to
encompass tracing and understanding of the changes them-
selves, as means of gaining insights on the population and
supporting strategic decisions.
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In Fig. 1, we depict clusters at four timepoints; they might
be user profiles or topics in news. New records are marked
with darker points; records older than two timepoints are re-
moved. We can easily see the clusters at each timepoint and,
also, that changes have occurred. However, finding the same
cluster again, categorizing and tracing the changes upon it is
much more challenging: “Did some clusters disappear? Or
were they rather absorbed by others? When is a cluster the
same and when does it mutate?” We propose MONIC for
the categorization and tracing of such cluster changes.

MONIC takes as input an accummulating dataset, whose
records are ageing, as is typical in data stream applications.
The records are clustered at consecutive time points and
their evolution is monitored. To this purpose, we propose a
typification of cluster transitions and a transition detection
algorithm. From the detected transitions we draw conclu-
sions on the lifetime and stability of clusters.

In Section 2, we discuss relevant research. In Section 3, we
introduce a cluster typification and then specify the notions
of overlap and matching for clusters derived from different
slots of the dataset. Section 4 contains our cluster transition
model and transition detection heuristics. In Section 5 we
present our first experiments. We conclude our study with
a summary and outlook.

2. RELATED WORK
The change detection framework FOCUS [5] compares two

datasets and computes a deviation measure between them,
based on the data mining models they induce. Clusters are a
special case of models, namely non-overlapping regions de-
scribed through a set of attributes (structure component)
and corresponding to a set of raw data (measure compo-
nent). However, understanding how a cluster has evolved
inside a new clustering is beyond the scope of FOCUS.

PANDA [3] proposes methods for the comparison of sim-
ple patterns and aggregation logics for the comparison of
complex ones. PANDA supports cluster comparison across
the time axis but concentrates on the generic and efficient
realization of comparisons rather than the detection and in-
terpretation of transitions. Finally, the “Pattern Monitor”
(PAM) [2] models patterns as temporal objects and cap-
tures their evolution, focusing mainly on association rules.
MONIC builds upon the insights of PANDA and PAM.

In spatiotemporal clustering, a cluster is a “densification”
in a time-invariant trajectory. Yang et al. detect “forma-
tion” and “dissipation” events upon clusters of spatial sci-
entific data [11]. Aggarwal models clusters with kernel func-
tions and changes as kernel density changes at each spatial
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Figure 1: Data records at four timepoints

location [1]; he considers different types of change, with em-
phasis on computing change “velocity” and finding the loca-
tions with the highest velocity. Such methods assume that
the trajectory does not change. Thus, they cannot be used if
the feature space changes, e.g. in text stream mining, where
features are usually frequent words. Further, hierarchical
clusterers cannot be coupled with such a method, as they
use ultra-metrics, i.e. a dataset defines its own trajectory.

Kalnis et al propose a special type of cluster change, the
“moving cluster”, whose contents may change while its den-
sity function remains the same during its lifetime [6]. They
find moving clusters by tracing common data records be-
tween clusters of consecutive timepoints. MONIC is more
general, since it encompasses several cluster transition types,
allows for the “ageing” of old objects and does not require
that the density function of a moving cluster is invariant.

Cluster change detection is also relevant for “topic evolu-
tion” in text streams, as dealt with in [8, 7], where a “topic”
is a cluster label, consisting of the dominant words inside
the cluster. In [8], the emphasis is on adapting the clus-
ters, while in [7] a topic evolution graph is built and used
to trace topic transitions, i.e. changes in the cluster labels
rather than the cluster themselves. These methods are ap-
plicable whenever a human-understandable cluster label can
be extracted and traced. Cluster labeling is not feasible for
all applications though. For this reason, MONIC detects
cluster transitions rather than cluster label transitions.

3. CLUSTER MODEL IN MONIC
MONIC models and traces cluster transitions upon data

that are collected and clustered at timepoints t1, . . . , tn.
A “data ageing” function may assign lower weights to old
records. The feature space may also change. MONIC as-
sumes re-clustering rather than cluster adaptation at each
timepoint, so that both changes in existing clusters and new
clusters can be monitored. Moreover, transitions can be
detected even when the underlying feature space changes,
i.e. when cluster adaptation is not possible. To do so, we
first specify the notion of “same” cluster or rather cluster
“match” across the time axis.

3.1 Clusterings upon Ageing Data
We observe clustering as a partitioning of the dataset into

homogeneous groups. We separate the cluster construction
algorithm from the data ageing function that specifies the
weights of the records processed by the algorithm.

Definition 1. A “clustering” ζ is a partitioning of dataset
D into partitions/clusters X1, . . . , Xk such that (a) ∀u 6= w :
Xu ∩ Xw = ∅, (b) ∪k

u=1Xu = D and (c) some optimization
criterion is satisfied, e.g. the members of each cluster are
more similar to each other than to other data records.

This is a set-theoretic definition of clusters. More elabo-
rate definitions are possible for clusters over a metric space,
whose topology can be used to specify proximity of objects.
As mentioned in section 2, MONIC is intended for arbitrary
clustering methods. We therefore observe clusters as sets.

Def. 1 assumes a complete partitioning of the dataset.
Clusterers that ignore outliers are indirectly covered by as-
suming a preprocessing step that removes outliers.

Definition 2. Let t1 . . . , tn be the sequence of timepoints
under observation and let Di, i = 2 . . . , n be the set of data
records accumulated from ti−1 until ti, while D1 is the initial
dataset, so that Di ∩ Dj = ∅ for i 6= j. A “data ageing
function” assigns a weight age(x, ti) ∈ [0, 1] to data record x

at ti for each x ∈ ∪i
l=1Dl and for each ti.

The weights assigned by the ageing function determine the
impact of a record upon clustering ζi ≡ ζi(∪

i
l=1Dl, age, ti).

This function covers sliding windows (the weights of records
outside the window are zero) but also more elaborate schemes.

3.2 Cluster Matching
Consider a cluster X ∈ ζi discovered at a timepoint ti.

A “cluster transition” is a change seen upon this cluster at
a later timepoint tj . To detect such a transition, we must
first find the cluster X in the clustering ζj of tj – if X is
still existent. We first define the (non-symmetric) “overlap”
between clusters and then the (best) match for a cluster.

Definition 3 (Cluster overlap). Let ζi, ζj (i < j)
be the clusterings at ti, tj , and let X ∈ ζi, Y ∈ ζj be two
clusters. The “overlap of X to Y ” is the normalized sum of
weights of the records in their set intersection:

overlap(X, Y ) =

P

a∈X∩Y
age(a, tj)

P

x∈X
age(x, tj)

Definition 4 (Cluster match). Let X be a cluster
in the clustering ζi at ti and Y be a cluster in ζj at tj > ti.
Further, let τ ≡ τmatch ∈ [0.5, 1] be a threshold value. Y is
“a match for X in ζj subject to τ”, i.e. Y = matchτ (X, ζj)
if and only if Y ∈ ζj is the cluster with the maximum overlap
for X and the overlap of X to Y is at least τ :

overlap(X, Y ) = maxU∈ζj
{overlap(X, U)} ≥ τ

If there is no such Y ∈ ζj , then matchτ (X, ζj) = ∅.

By Def. 4, ζj can contain at most one match for each cluster
in ζi, although the same cluster in ζj can be the match of
more than one clusters in ζi. We restrict the threshold τ to
the interval [0.5, 1] to stress that a cluster is a match only
if it contains at least half of the pivot cluster (e.g. half of
its members, if the members are weighted equally). A tie
can then occur only for τ = 0.5. Different tie breakers can
be used, choosing e.g. the Y that has the maximum reverse
overlap overlap(Y, X) or the Y that is closest to X in size.



4. CLUSTER TRANSITIONS IN MONIC
In MONIC, a cluster transition at a given timepoint is

a change experienced by a cluster that has been discovered
at an earlier timepoint. Such a transition may concern the
content and form of the cluster, i.e. be “internal” to it, or
it may concern its relationship to the rest of the clustering,
i.e. be an “external transition”. We define these types of
transitions and introduce heuristics that trace them.

4.1 Detection of External Transitions
The “external transitions” of cluster X ∈ ζi with respect

to ζj at tj > ti are defined in Table 1. A cluster X ∈ ζi

survives in ζj if (a) there is a match for it in ζj subject to
τ and (b) this match does not cover any further cluster of
ζi. If the match covers at least one further cluster in ζi,
then X has been absorbed. If no match exists, then a split
may have occurred: The contents of X are in more than
one clusters of ζj . Then, the overlaps must be no less than
τsplit (obviously: τsplit < τ), to prevent degenerate cases.
Moreover, all those clusters together must form a match for
X . If none of these cases occur, then X has disappeared.

All but the last transitions in Table 1 refer to changes of
a given cluster. Emerging clusters are detected after tracing
all external transitions for each cluster in ζi: They are the
clusters in ζj that are not the result of external transitions.

In Fig. 2 we present our transition detector. For the clus-
ters in clustering ζi of ti (ζ i in the Figure), it detects their
external transitions on the clustering ζ j ≡ ζj of tj > ti.

For each cluster X ∈ ζi, the detector performs some ini-
tializations and then computes the overlap of X to each
cluster of ζj (line 5). In line 7, the best match for X is se-
lected, according to some tie breaking criterion as discussed
after Def. 4. So, each cluster in ζi has at most one survival
candidate. If X has none, clusters overlapping with it for
more than τsplit are found (lines 10–12). If neither exist,
then X is marked as disappeared (lines 15–16).

Split detection involves building a list of split candidate
clusters (line 11), which must form a match for cluster X
when taken together (cf. Table 1). The operation of “taking
the clusters together” (line 12) is currently the set union of
the records, i.e. without considering their weights. However,
weights are still considered in the overlap test performed at
line 18. If the test succeeds, cluster X is marked as split
(line 20), otherwise it is marked as disappeared (line 22).

The cases of absorption and survival are initially treated
together: ζi clusters and their survival candidates are added
to a list of absorptions and survivals (line 24). When all ζi

clusters are processed, this list is completed (line 26). Then,
for each ζj cluster Y , the detector extracts from this list all
ζi clusters for which Y is a survival candidate (line 28). If
this sublist contains more than one clusters, then these have
been absorbed by Y : They are marked as such (lines 30–31)
and removed from the original list (line 32). Otherwise, the
single member of the sublist is a cluster X that has survived
as Y (line 35). Again, the original list is updated (line 36).

Several improvements of this base algorithm are possible.
First, instead of computing the overlap for each pair of clus-
ters (line 5), MONIC computes the matrix M of the overlap
values and retrieves the appropriate cell Mcell, whenever
the overlap of two clusters is needed. Furthermore, split de-
tections (lines 12, 18) can be performed more effectively, if
one observes that two clusters in ζj cannot have common
members. Then, the split test can be computed from the

1 FOR X ∈ ζ i
2 splitCandidates = splitUnion = ∅;
3 survivalCandidate = NULL;
4 FOR Y ∈ ζ j
5 Mcell = overlap(X,Y);
6 IF Mcell ≥ τ THEN
7 IF g(X,Y) > g(X,survivalCandidate)
8 survivalCandidate = Y;
9 ENDIF
10 ELSEIF Mcell ≥ τ split THEN
11 splitCandidates += Y;
12 splitUnion = splitUnion ∪ Y ;
13 ENDIF
14 ENDFOR
15 IF survivalCandidate == NULL OR splitCandidates == ∅
16 THEN deadList += X; // X → ⊙
17 ELSEIF splitCandidates 6= ∅ THEN
18 IF overlap(X,splitUnion) ≥ τ THEN
19 FOR Y ∈ splitCandidates
20 splitList += (X,Y);

21 ENDFOR // X
⊂
→ splitCandidates

22 ELSE deadList += X; // X → ⊙
23 ENDIF
24 ELSE Absorptions˙Survivals += (X,survivalCandidate);
25 ENDIF
26 ENDFOR
27 FOR Y ∈ ζ j
28 absorptionCandidates = makeList(Absorptions˙Survivals,Y);
29 IF cardinality(absorptionCandidates) > 1 THEN
30 FOR X ∈ absorptionCandidates

31 absorbtionList += (X,Y); // X
⊂
→ Y

32 Absorptions˙Survivals -= (X,Y);
33 ENDFOR
34 ELSEIF absorptionCandidates == X THEN
35 survivalList += (X,Y); // X → Y
36 Absorptions˙Survivals -= (X,Y);
37 ENDIF
38 ENDFOR

Figure 2: Detector of external transitions

individual intersection values in M because:

X

a∈X∩(∪
p
u=1

Yu)

age(a, tj) =

p
X

u=1

X

a∈X∩Yu

age(a, tj)

Thus, the complexity is O(K2) for K = max{|ζi|, |ζj |}, once
the matrix M is computed.

4.2 Detection of Internal Transitions
Survived clusters may undergo internal changes. In Ta-

ble 2, we have grouped the internal transitions as changes
in size, in compactness and location. The transitions inside
a group are mutually exclusive, but transitions of different
groups can be combined. For example, a cluster X ∈ ζi

matched by Y ∈ ζj can become larger and more compact.
Size transition indicators compare the datasets of X and

Y , taking the ti weights of the records in X into account.
Compactness transitions cannot be traced by observing the
data records directly, so we resort to studying derivative
values over the data distribution. The indicator appearing in
Table 2 is the standard deviation: If it has decreased by more
than some small value δ, then the cluster has become more
compact; if it has increased by more than δ, the cluster has



Transition Notation Indicator

the cluster survives X → Y Y = matchτ (X, ζj) AND 6 ∃Z ∈ ζi \ {X} : Y = matchτ (Z, ζj)

the cluster is split into mul-
tiple clusters

X
⊂
→ {Y1, . . . , Yp} (∀u = 1 . . . p : overlap(X, Yu) ≥ τsplit)∧ overlap(X,∪p

u=1Yu) ≥ τ ∧
( 6 ∃Y ∈ ζj \ {Y1 . . . , Yp} : overlap(X, Y ) ≥ τsplit)

the cluster is absorbed X
⊂
→ Y Y = matchτ (X, ζj) AND ∃Z ∈ ζi \ {X} : Y = matchτ (Z, ζj)

the cluster disappears X → ⊙ none of the above cases holds for X

a new cluster has emerged ⊙ → Y

Table 1: External transitions of a cluster

Transition type Subtype Notation Indicators

1. Size transition 1a. the cluster shrinks X ց Y
P

x∈X
age(x, ti) >

P

y∈Y
age(y, tj) + ε

1b. the cluster expands X ր Y
P

y∈Y
age(y, tj) >

P

x∈X
age(x, ti) + ε

2. Compactness 2a. the cluster becomes compacter X
•
→ Y σ(Y ) < σ(X) − δ

transition 2b. the cluster becomes diffuser X
⋆
→ Y σ(Y ) > σ(X) + δ

3. Location transition Shift of center (I1) or X · · · → Y I1. |µ(X) − µ(Y )| > τ1 //mean

distribution (I2) I2. |γ(X) − γ(Y )| > τ2 //skewness

No change X ↔ Y

Table 2: Internal transitions of a cluster

become more diffuse. Other statistics can be used instead
of the standard deviation, e.g. kurtosis, while a significance
test can be applied instead of using a constant δ.

Location transitions over a static metric space are cluster
“movements” inside the invariant trajectory. If there is no
static metric space, then we define location transitions as
shifts in the distribution: Indicator I1 detects shifts of the
mean, I2 traces changes in the skewness γ().

4.3 Lifetime of Clusters and Clusterings
Intuitively, if most clusters in a clustering survive from

one period to the next, then the population is static and the
clustering describes it well. If transitions are frequent, then
the population is volatile and the clustering cannot describe
it well. We model the lifetime of clusters and clusterings and
use them to gain insights on the evolution of the population.

Definition 5. Let C be a cluster and ti be the first time-
point where it emerged (as part of clustering ζi). The life-
time of C is the number of timepoints, in which C has sur-
vived. We define (i) a “strict lifetime” lifetimeS as the num-
ber of consecutive survivals without internal transition, (ii)
a “lifetime under internal transitions” lifetimeI for which all
survivals are counted and (iii) a “lifetime with absorptions”
lifetimeA that further counts absorptions of C.

We compute cluster lifetime in a backward fashion: We
start with ζn and set the lifetime of its clusters to 1. At an
earlier timepoint ti, the strict lifetime of cluster X is 1 if X
did not survive in ti+1. If there is a Y ∈ ζi+1 with X ↔ Y ,
then lifetimeS(X) = lifetimeS(Y ) + 1. If there is a Y ∈
ζi+1 with X → Y , then the lifetime of X under internal
transitions is lifetimeI(X) = lifetimeI(Y ) + 1. If there is

a Y ∈ ζi+1 with either X → Y or X
⊂
→ Y , then the lifetime

of X with absorptions is lifetimeA(X) = lifetimeA(Y )+1.
The survival of a clustering built at ti is reflected on the

number of its clusters that survive or are absorbed at ti+1:

Definition 6. Let ζi be the clustering at ti, i = 1 . . . n−1.
Its “survival ratio” is the portion of its clusters that survived
(possibly with internal transitions) in ζi+1. Its absorption

ratio is the portion of clusters absorbed by clusters of ζi+1.

survivalRatio(ζi) =
|{X ∈ ζi|∃Y ∈ ζi+1 : X → Y }|

|ζi|
(1)

absorptionRatio(ζi) =
|{X ∈ ζi|∃Y ∈ ζi+1 : X

⊂
→ Y }|

|ζi|
(2)

where |U | denotes the cardinality of set U . The “passforward
ratio” of ζi is the sum of its survival and absorption ratios.

5. EXPERIMENTS
We have experimented with MONIC on the ACM library

section H2.8 on “database applications”. Goal was to gain
insights on the evolution of the clusters and to study the
impact of different parameter settings.

5.1 Section H.2.8 of the ACM digital library
ACM library section H.2.8 “Database applications” con-

tains publications on (1) data mining, (2) spatial databases,
(3) image databases, (4) statistical databases, (5) scientific
databases – categorized in the corresponding classes. It
further contains (6) uncategorized documents, i.e. those as-
signed in the parent class “database applications” only. For
the time 1997–2004, we have selected the documents whose
primary (or a secondary) class is one of the 6 classes in H.2.8.
We must note here that the collection is unbalanced: the
class “Data Mining” is larger than all the others together
and grows faster than them. Many clustering algorithms
have difficulties with such data distributions.

For each document, we have considered the title and the
list of keywords. We have designed several feature spaces,
ranging from the whole set of words to a small list of fre-
quent words. We have also studied alternative weighting
schemes, such as the embedded mechanism of CLUTO 1 and
the entropy-based feature weighting function of [4]. The best
clusterings with respect to the ACM categorization were ac-
quired (a) for a feature space consisting of the 30 most fre-
quent, TF×IDF-weighted words and (b) for the method of
[4]. We chose the former, computationally simpler approach.

1http://glaros.dtc.umn.edu/gkhome/views/cluto/



For clustering, we have experimented with Expectation-
Maximization [10], with a hierarchical clusterer using single
linkage, with CLUTO and with bisecting K-means. Best
results were obtained with bisecting K-means for K=10.
Document vectorization and clustering were then performed
with the DIAsDEM Workbench open source text miner 2.
For data ageing, we used a sliding window of size 2.

5.2 Cluster transitions and threshold impact
We first set τsplit = 0.1, varied the threshold τ from 0.45

(rather than 0.50) to 0.7 in steps of 0.05 and counted the
clusters with internal or external transitions. For τ larger
than 0.7, there were hardly any cluster survivals, so we omit
these values. In Fig. 3(a) we see that the number of sur-
viving clusters drops as τ increases, while there are more
disappearing clusters and splits, as shown in Fig. 3(b), (c).
For τ larger than 0.6, the number of splits does not change
any more, so it is not shown. All surviving clusters expe-
rience changes in size. There are no absorptions, i.e. the
passforward ratio is equal to the survival ratio.

Fig. 3(a), (b), (c) show that there are more disappear-
ances than splits in early timepoints, while the trend re-
verses later. A possible explanation is that there are larger
homogeneous cluster chunks at late timepoints. To study
this closer, we have fixed τ = 0.5 and varied τsplit from 0.1
to 0.35 with a step of 0.05. We see the results in Fig. 4:
Splits still occur only for small values of τsplit, i.e. there are
no large chunks. Indeed, the dominant class “Data Mining”
grows substantially in the recent timepoints but is not ho-
mogeneous enough to produce clusters with a long lifetime.

5.3 Lifetime of clusters and clusterings
We have next studied the persistence of the clusterings.

The passforward ratios (cf. Def. 6) are shown in Table 3,
using asbolute numbers of clusters for simplicity. The clus-
terings at some timepoints have a high passforward ratio,
independently of the τ values. At 2002, the passforward ra-
tio is very low, indicating a drastic change in the population
of documents after a rather stable period of two years. The
nature and origin of this shift are discussed below.

τ 1999 2000 2001 2002 2003 2004
0.45 4 7 7 1 5 4
0.50 4 5 7 1 3 4
0.55 3 3 3 0 2 3
0.60 3 2 3 0 1 1
0.65 3 0 1 0 0 1
0.70 2 0 1 0 0 0

Table 3: Passforward ratios for different values of τ

5.4 Clusters vs Classes of the ACM Library
The population shift detected by MONIC in 2002 called

for inspection of the cluster semantics. We have labeled
each cluster with its two most frequent words and mapped
these labels/“topics” to the ACM classes; details can be
found in [9]. For cluster transition detection, we have set
τ = 0.5 and τsplit = 0.1 and concentrated on splits, dis-
appearances and cluster lifetime with internal transitions
(lifetimeI), since there were no strict survivals and no ab-
sorptions. On this basis, we have checked whether cluster

2Registered under http://sourceforge.net/projects/hypknowsys
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Figure 3: Cluster transitions for different values of
τ : (a) Survivals, (b) disappearances and (c) splits

transitions correspond to comprehensible topic evolutions.
The findings are as follows:

(a) There is always an unlabeled cluster, cluster “0”, be-
cause K-means places in it all records that cannot be clus-
tered properly. It survives (and grows) until 2002, where-
upon it is scattered and replaced by a new garbage cluster.

(b) Each clustering contains two or three clusters on data
mining. In the first 4 timepoints, we find a growing cluster
on “association rules”. In 2002, it is split into a smaller
cluster with the same label and a noisy cluster:

C19984
ր C19999

ր C20006
ր C20014

⊂
→ {C20027

, C20029
}

where denote as Cyw the identifier of the “association rules”
cluster in year y, w = 0 . . . 9 3.
The small cluster C20027

disappears in 2003 (C20027
→ ⊙).

3Cluster identifiers are generated by the clustering algo-
rithm at each timepoint. They do not indicate transitions.
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Figure 4: Cluster transitions for different values of
τsplit: (a) Splits and (b) disappearances

One of the emerging clusters of 2004 (⊙ → C20043
) has again

the label “association rules”.
(c) The other clusters on data mining have less specific la-

bels, such as “knowledge discovery” or “data mining”. Their
lifetime does not exceed 3 timepoints, during which they ex-
perience splits and size transitions.

(d) At the early timepoints, there are clusters labeled
“spatial” and “image” (later: “image retrieval”). The labels
appear in several periods but are associated with different
clusters, so the cluster lifetime is low. Clusters associated to
classes other than “Data Mining” appear only until 2002.

Hence, MONIC detected a remarkable shift in the accum-
mulating H.2.8 section between 2001 and 2002, signalled by
cluster splits and disappearances. The history of H.2.8 con-
tains at least one event that may explain this shift: Starting
with KDD’2001, the proceedings of the conference and of
some adjoint workshops are being uploaded in the ACM
Digital Library, enriching the H.2.8 section with a lot of
documents on many subtopics of data mining.

6. CONCLUSION AND OUTLOOK
We have presented the framework MONIC for the moni-

toring of cluster transitions. MONIC encompasses a cluster
transition model and a transition detection algorithm, oper-
ating upon clusterings over an accummulating dataset. We
have applied MONIC on a section of the ACM library and
have shown how cluster transitions give insights to changes
of the data population. Currently, we work on heuristic en-
hancements of the transition detection algorithm to reduce
the matrix computation overhead at each timepoint. This
includes the use of summary data, as discussed below.

Data records are not always available for cluster monitor-
ing, though, e.g. because of the storage demand or due to
privacy considerations. In such cases, only summary data
are available. MONIC does use summary data to detect
internal transitions. In future work, we want to use sum-
mary data also for the detection of external transitions and
to elaborate on the tradeoff between performance gain and
information loss (for example, splits and absorptions can-
not be traced). Finally, we plan to use MONIC to test the
stability of clusters and clusterings over time.

7. REFERENCES
[1] C. Aggarwal. On change diagnosis in evolving data

streams. IEEE TKDE, 17(5):587–600, May 2005.

[2] S. Baron, M. Spiliopoulou, and O. Günther. Efficient
monitoring of patterns in data mining environments.
In Proc. of 7th East-European Conf. on Advances in
Databases and Inf. Sys. (ADBIS’03), LNCS, pages
253–265. Springer, Sept. 2003.

[3] I. Bartolini, P. Ciaccia, I. Ntoutsi, M. Patella, and
Y. Theodoridis. A unified and flexible framework for
comparing simple and complex patterns. In Proc. of
ECML/PKDD 2004, Pisa, Italy, Sept. 2004.

[4] C. Borgelt and A. Nürnberger. Experiments in
Document Clustering using Cluster Specific Term
Weights. In Proc. Workshop Machine Learning and
Interaction for Text-based Information Retrieval (TIR
2004), pages 55–68, Ulm, Germany, 2004.

[5] V. Ganti, J. Gehrke, and R. Ramakrishnan. A
Framework for Measuring Changes in Data
Characteristics. In Proc. of the 18th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 126–137, Philadelphia,
Pennsylvania, May 1999. ACM Press.

[6] P. Kalnis, N. Mamoulis, and S. Bakiras. On
Discovering Moving Clusters in Spatio-temporal Data.
In Proc. of 9th Int. Symposium on Advances in Spatial
and Temporal Databases (SSTD’2005), number 3633
in LNCS, pages 364–381, Angra dos Reis, Brazil, Aug.
2005. Springer.

[7] Q. Mei and C. Zhai. Discovering Evolutionary Theme
Patterns from Text - An Exploration of Temporal
Text Mining. In Proc. of KDD’05, pages 198–207,
Chicago, IL, Aug. 2005. ACM Press.

[8] S. Moringa and K. Yamanichi. Tracking Dynamics of
Topic Trends Using a Finite Mixture Model. In Proc.
of KDD’04, pages 811–816, Seattle, Washington, Aug.
2004. ACM Press.

[9] R. Schult and M. Spiliopoulou. Discovering emerging
topics in unlabelled text collections. In Proc. of
ADBIS’2006, Thessaloniki, Greece, Sept. 2006.
Springer. to appear.

[10] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Fransisco, 2nd edition, 2005.

[11] H. Yang, S. Parthasarathy, and S. Mehta. A
generalized framework for mining spatio-temporal
patterns in scientific data. In Proc. of KDD’05, pages
716–721, Chicago, IL, Aug. 2005. ACM Press.


