
Building Real-World Trajectory Warehouses
Gerasimos Marketos

Dept. of Informatics,
University of Piraeus, Greece

marketos@unipi.gr

Nikos Pelekis
Dept. of Informatics,

University of Piraeus, Greece

npelekis@unipi.gr

Elias Frentzos
Dept. of Informatics,

University of Piraeus, Greece

efrentzo@unipi.gr

Alessandra Raffaetà
Dept. of Informatics,

University Ca’ Foscari Venezia, Italy

raffaeta@dsi.unive.it

Irene Ntoutsi
Dept. of Informatics,

University of Piraeus, Greece

ntoutsi@unipi.gr

Yannis Theodoridis
Dept. of Informatics,

University of Piraeus, Greece

ytheod@unipi.gr

ABSTRACT

The flow of data generated from low-cost modern sensing
technologies and wireless telecommunication devices enables
novel research fields related to the management of this new kind
of data and the implementation of appropriate analytics for
knowledge extraction. In this work, we investigate how the

traditional data cube model is adapted to trajectory warehouses in
order to transform raw location data into valuable information. In
particular, we focus our research on three issues that are critical to
trajectory data warehousing: (a) the trajectory reconstruction
procedure that takes place when loading a moving object database
with sampled location data originated e.g. from GPS recordings,
(b) the ETL procedure that feeds a trajectory data warehouse, and
(c) the aggregation of cube measures for OLAP purposes. We

provide design solutions for all these issues and we test their
applicability and efficiency in real world settings.

Categories and Subject Descriptors: H.2.8

[Database Management]: Database Applications

General Terms: Design

Keywords: Trajectory Reconstruction, Moving Object

Databases, Trajectory Data Warehouses, Distinct Count problem

1. INTRODUCTION
The usage of location aware devices, such as mobile phones and
GPS-enabled devices, is widely spread nowadays, allowing access
to large spatiotemporal datasets. The space-time nature of this
kind of data results in the generation of huge amounts of

trajectory data and imposes new challenges regarding their
efficient management. To address this need, the traditional
database technology has been extended into Moving Object
Databases (MODs) that handle modeling, indexing and query
processing issues for trajectories [6], [16]. Moreover, the analysis
of such trajectory data raises opportunities for discovering
behavioral patterns that can be exploited in applications like
traffic management and service accessibility. Online analytical

processing (OLAP) and data mining (DM) techniques have been
employed in order to convert this vast amount of raw data into
useful knowledge [8], [9], [12]. Indicatively, the variable number
of moving objects in different urban areas, the average speed of
vehicles, the ups and downs of vehicles‟ speed as well as useful
insights, like discovering popular movements [4] can be analyzed
in a Trajectory Data Warehouse (TDW).

In this paper, we propose a framework for TDW that takes into
consideration the complete flow of tasks required during a TDW

development. The complete lifecycle of a TDW is illustrated in
Figure 1 and it consists of various steps. A Trajectory
Reconstruction process is applied on the raw time-stamped
location data in order to generate trajectories, which are then
stored into a MOD. Then, an Extract-Transform-Load (ETL)
procedure is activated that feeds the data cube(s) with aggregate
information on trajectories. The final step of the process offers
OLAP (and, eventually, DM) capabilities over the aggregated

information contained in the trajectory cube model.

location data producers trajectory data analyst

Reconstructed trajectory
data are stored in MOD

Location data (x, y, t)
are recorded

Aggregates are loaded in the
data cube (ETL procedure)

Trajectory

Data Cube
MOD

Trajectory
reconstruction

module

Analysis
over

aggregate
data is

performed
(OLAP)

Figure 1. The architecture of our framework.

A MOD maintains object locations recorded at various time points
in the form of trajectories. Formally, let D = {T1, T2, …, TN} be a
MOD consisting of the trajectories of a set of moving objects.
Assuming linear interpolation between consecutive sampled

locations, the trajectory),,(),...,,,(
111 ininin

iiiiiii tyxtyxT

consists of a sequence of ni line segments in 3D space, where each
segment represents the continuous “development” of the
corresponding moving object between consecutive

locations),(
jj ii yx sampled at time

ji
t . Projecting Ti on the spatial

2D plane (temporal 1D line), we get the route ri (the lifespan li,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MobiDE’08, June 13, 2008, Vancouver, British Columbia, Canada.

Copyright 2008 ACM 978-1-60558-221-4

8

respectively) of moving object. Additional motion parameters can
be derived, including the traversed length len of route ri, average
speed, acceleration, etc.

Let us assume a MOD that stores raw locations of moving objects
(e.g. humans); a typical schema, to be considered as a minimum

requirement, for such a MOD is illustrated in Figure 2.

OBJECTS (id: identifier, description: text, gender: {M | F}, birth-date:

date, profession: text, device-type: text)

RAW_LOCATIONS (object-id: identifier, timestamp: datetime,

eastings-x: numeric, northings-y: numeric, altitude-z: numeric)

MOD_TRAJECTORIES (trajectory-id: identifier, object-id: identifier,

trajectory: 3D geometry)

Figure 2. An example of a MOD.

OBJECTS includes a unique object identifier (id), demographic
information (e.g. description, gender, date of birth, profession) as

well as device-related technographic information (e.g. GPS type).
RAW_LOCATIONS stores object locations at various time stamps
(i.e., samples), while MOD_TRAJECTORIES maintains the
trajectories of the objects, after the application of the trajectory
reconstruction process.

Following the multidimensional model [1], a data cube for
trajectories consists of a fact table containing keys to dimension
tables and a number of appropriate measures. Dimension tables

might have several attributes in order to build multiple hierarchies
so as to support OLAP analysis whereas measures could be
trajectory-oriented (e.g., number of trajectories, number of
objects, average speed, etc.). For each dimension we define a
finest level of granularity which refers to the detail of the data
stored in the fact table.

Definitely, a TDW should include a spatial and a temporal
dimension describing geography and time, respectively. Another

dimension regarding conventional information about moving
objects (including demographical information, such as gender,
age, etc.) could be considered as well.

OBJECT_PROFILE_DIM

PK OBJPROFILE_ID

 GENDER
 BIRTHYEAR
 PROFESSION
 MARITAL_STATUS
 DEVICE_TYPE

FACT_TBL

PK,FK3 INTERVAL_ID

PK,FK2 PARTITION_ID

PK,FK1 OBJPROFILE_ID

 COUNT_TRAJECTORIES
 COUNT_USERS
 AVG_DISTANCE_TRAVELED
 AVG_TRAVEL_DURATION
 AVG_SPEED
 AVG_ABS_ACCELER

SPACE_DIM

PK PARTITION_ID

 PARTITION_GEOMETRY
 DISTRICT
 CITY
 STATE
 COUNTRY

TIME_DIM

PK INTERVAL_ID

 INTERVAL_START
 INTERVAL_END
 HOUR
 DAY
 MONTH
 QUARTER
 YEAR
 DAY_OF_WEEK
 RUSH_HOUR

Figure 3. An example of TDW.

Based on the above, we consider as a minimum requirement for

our framework the following dimensions (Figure 3):

 Geography: the spatial dimension (SPACE_DIM) allows us to
define spatial hierarchies. Handling geography at the finest

level of granularity could include (as alternative solutions) a
simple grid, a road network or even coverage of the space
with respect to the mobile cell network. According to the

first alternative, the space is divided in explicitly defined
(usually, rectangular) areas. For the purposes of this paper,
we assume a grid of equally sized rectangles
(PARTITION_GEOMETRY in Figure 3), the size of which is a
user-defined parameter, (e.g. 10×10 Km2).

 Time: the temporal dimension (TIME_DIM) defines temporal
hierarchies. Time dimension has been extensively studied in

the data warehousing literature [1]. At the finest level of
granularity, we assume user-defined time intervals (e.g. 1
hour periods).

 User Profile: the thematic dimension (OBJECT_PROFILE_DIM)

refers to demographic and technographic information.

Apart from keys to dimension tables, the fact table also contains a
set of measures including aggregate information. The measures
considered in the TDW schema of Figure 3 include the number of
distinct trajectories (COUNT_TRAJECTORIES), the number of
distinct users (COUNT_USERS), the average traveled distance
(AVG_DISTANCE_TRAVELED), the average travel duration

(AVG_TRAVEL_DURATION), the average speed (AVG_SPEED) and
the average acceleration in absolute values (AVG_ABS_ACCELER),
for a particular group of people moving in a specific spatial area
during a specific time period.

In order to build a TDW, several issues should be handled; we
summarize these issues below accompanied with our
contributions in this paper:

 First, sampled positions received by GPS-enabled devices

need to be converted into trajectory data and to be stored in a
MOD; to this end, we propose a trajectory reconstruction
technique that transforms sequences of raw sample points

into meaningful trajectories.

 Second, the TDW is to be fed with aggregate trajectory data;

to achieve it we propose two alternative solutions: a (index-
based) cell-oriented and a (non-index-based) trajectory-
oriented ETL process.

 Third, aggregation capabilities over measures should be

offered for OLAP purposes (i.e., how the measures at a lower
level of the cube hierarchy can be exploited in order to
compute the measures at some higher level of the hierarchy).
The peculiarity with trajectory data is that a trajectory might
span multiple base cells (the so called distinct count problem
[17]). This causes aggregation hindrances in OLAP
operations. We provide approximation solutions for this

problem, which turn out to perform effectively.

The rest of the paper is organized as follows: Section 2 presents
basic concepts on trajectories and trajectory warehouses as well as
the related work that motivated our work. Section 3 constitutes the
core of the paper, where we discuss the trajectory reconstruction
process, the ETL procedure for feeding the data cube, and the
measures aggregation problem. Empirical results are presented in
Section 4, where we evaluate the efficiency of our approach

through an extensive experimental study. Conclusions and open
research issues are outlined in Section 5.

2. RELATED WORK
The pioneering work by Han et al. [7] introduces the concept of
spatial data warehousing (SDW). The authors extend the idea of

cube dimensions so as to include spatial and non-spatial ones, and

9

of cube measures so as to represent space regions and/or calculate
numerical data. One step further from modeling a SDW is
modeling a TDW. The motivation here is to transform raw
trajectories to valuable information that can be utilized for
decision making purposes in ubiquitous applications, such as

mobile marketing, location-based services and traffic control
management. Trajectory warehousing [13] is in its infancy but we
can distinguish three major research directions on this field:
modeling, aggregation and indexing.

From a modeling perspective, the definition of hierarchies in the
spatial dimension introduces issues that should be addressed. The
spatial dimension may include not explicitly defined hierarchies
[8]. Thus, multiple aggregation paths are possible and they should

be taken into consideration during OLAP operations. Tao and
Papadias [16] propose the integration of spatial and temporal
dimensions and present appropriate data structures that integrate
spatiotemporal indexing with pre-aggregation. Choi et al. [2] try
to overcome the limitations of multi-tree structures by introducing
a new index structure that combines the benefits of Quadtrees and
Grid files. However, the above frameworks focus on calculating
simple measures (e.g. count customers). Very recently, an attempt

to model and maintain a TDW is presented in [10], [11] where a
simple data cube consisting of spatial / temporal dimensions and
numeric measures concerning trajectories, is defined.

The distinguishing features of our work are:

i) the presence of a preprocessing phase dealing with the explicit
construction of the trajectories, which are then stored into a
MOD that offers powerful and efficient operations for the
manipulation of such data;

ii) the proposal of alternative ETL processes, a procedure
underestimated so far in related work; and

iii) the solutions proposed on the challenging issue of measure
aggregation which occurs due to the trajectory oriented cube
model.

We emphasize that this work does not aim at proposing yet
another TDW model. Instead, we provide efficient solutions to
support the complete flow of processes in a TDW, from trajectory
reconstruction to trajectory-oriented OLAP.

3. PROPOSED SOLUTIONS
So far, we have described a MOD that stores trajectory data
reconstructed from raw location data (Figure 2) and a trajectory-
oriented data cube that offers multi-dimensional analysis
capabilities (Figure 3). In this section, we thoroughly describe our

proposed solutions for the trajectory reconstruction problem
(Subsection 3.1), the efficient ETL process for feeding the TDW
(Subsection 3.2) and the distinct count problem that appears
during measures aggregation (Subsection 3.3).

3.1 Reconstructing trajectories

As already discussed, collected raw data represent time-stamped
geographical locations (Figure 4a). Apart from storing these raw
data in the MOD, we are also interested in reconstructing
trajectories (Figure 4b). The so-called trajectory reconstruction

task is not a straightforward procedure. Having in mind that raw
points arrive in bulk sets, we need a filter that decides if the new
series of data is to be appended to an existing trajectory or not.

Figure 4. a) raw locations, b) reconstructed trajectories.

In this work, we assume this filter to be part of a trajectory
reconstruction manager, along with a simple method for
determining different trajectories, which applies it on raw
positions. Due to the fact that the notion of trajectory cannot be

the same in every application, we define the following generic
trajectory reconstruction parameters:

 Temporal gap between trajectories gaptime: the maximum

allowed time interval between two consecutive time-stamped
positions of the same trajectory for a single moving object. As
such, any time-stamped position of object oi, received after
more than gaptime time units from its last recorded position,
will cause a new trajectory of the same object to be created
(case a in Figure 4a) .

 Spatial gap between trajectories gapspace: the maximum

allowed distance in 2D plane between two consecutive time-
stamped positions of the same trajectory. As such, any time-
stamped position of object oi, with distance from the last
recorded position of this object greater than gapspace, will cause
a new trajectory to be created for oi (case b in Figure 4a).

 Maximum speed Vmax: the maximum allowed speed of a

moving object. It is used in order to determine whether a
reported time-stamped position must be considered as noise
and consequently discarded from the output trajectory. When a
new time-stamped location of object oi is received, it is
checked with respect to the last known position of that object,
and the corresponding instant speed is calculated. If it exceeds
Vmax, this location is considered as noise and (temporarily) it is
not considered in the trajectory reconstruction process

(however, it is kept separately as it may turn out to be useful
again – see the parameter that follows) (case c in Figure 4a).

 Maximum noise duration noisemax: the maximum duration of a

noisy part of a trajectory. Any sequence of noisy time-stamped
positions of the same object will result in a new trajectory
given that its duration exceeds noisemax. For example, consider

an application recording positions of pedestrians where the
maximum speed set for a pedestrian is Vmax = 3 m/sec. When
he/she picks up a transportation mean (e.g., a bus), the
recorded instant speed will exceed Vmax, flagging the positions
on the bus as noise. The maximum noise length parameter
stands for supporting this scenario: when the duration of this
sequence of „noise‟ exceeds noisemax, a new trajectory
containing all these positions is created (case d in Figure 4a).

 Tolerance distance Dtol: the tolerance of the transmitted time-

stamped positions. In other words, it is the maximum distance
between two consecutive time-stamped positions of the same
object in order for the object to be considered as stationary.
When a new time-stamped location of object oi is received, it is

t
y y

t d

b

c e

a

x x

10

checked with respect to the last known position of that object,
and if the distance of the two locations is smaller than Dtol, it is
considered redundant and consequently discarded (case e in
Figure 4a).

The proposed TRAJECTORY-RECONSTRUCTION algorithm is
illustrated in Figure 5. The input of the algorithm includes raw
data points (i.e., time-stamped positions) along with object-id, and
a list containing the partial trajectories processed so far by the
trajectory reconstruction manager; these partial trajectories are

composed by several of the most recent trajectory points,
depending on the values of the algorithm parameters.

Algorithm Trajectory-Reconstruction

 (PartialTrajectories List, P Point, OId ObjectId)

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

 IF NOT PartialTrajectories.Contains(OId) THEN

 CTrajectory=New Trajectory;

 CTrajectory.AddPoint(P);

 PartialTrajectories.Add(CTrajectory);

 ELSE

 CTrajectory=PartialTrajectories(OId);

 IF Distance(CTrajectory.LastPoint,P)<= DTOL THEN

 IF P.T – CTrajectory.LastPoint.T > gapTime THEN
 Report Ctrajectory.LastPoint;

 CTrajectory.Id=CTrajectory.Id+1;

 CTrajectory.AddPoint(P);

 ENDIF
 ELSEIF Speed(CTrajectory.LastPoint,P)> Vmax THEN

 IF P.T – CTrajectory.LastPoint.T > noisemax THEN
 Report CTrajectory.Noise;

 ELSE

 CTrajectory.AddNoise(P);

 ENDIF

 ELSEIF Distance(CTrajectory.LastPoint,P)> gapspace THEN

 Report Ctrajectory.LastPoint;

 CTrajectory.Id=CTrajectory.Id+1;

 CTrajectory.AddPoint(P);

 ELSE

 IF P.T – CTrajectory.LastPoint.T > gapTime THEN
 Report Ctrajectory.LastPoint;

 CTrajectory.Id=CTrajectory.Id+1;

 CTrajectory.AddPoint(P);

 ELSE
 CTrajectory.AddPoint(P);

 ENDIF

 ENDIF

 ENDIF

Figure 5. The TRAJECTORY-RECONSTRUCTION algorithm.

As a first step (lines 1-6), the algorithm checks whether the object
has been processed so far, and, if so, retrieves its partial trajectory
from the corresponding list, while, in the opposite case, creates a
new trajectory and adds it to the list. Then (lines 7-31), it
compares the incoming point P with the tail of the partial
trajectory (LastPoint) by applying the above mentioned trajectory
reconstruction parameters:

 it rejects P if it is closer than Dtol to LastPoint (lines 7-12) or

 it rejects P when a speed greater than Vmax is calculated,

unless the noisemax case is triggered (lines 13-18) or

 it creates a new trajectory if the temporal duration between P

and LastPoint is longer than gaptime (lines 8-12 and 24-27) or
their spatial distance is greater than gapspace (lines 19-22);

in any other case, it reports LastPoint in the partial trajectory and
replaces it with P.

The above procedure supports the reasonable requirement for
detecting one trajectory per trip: Let us consider the case where a
tracked user is traveling from home to work in the morning and
from work to home in the evening, leaving his/her tracking device
(e.g., GPS) always active. In this case, during the time the car is

parked there are no spatial gaps, and no maximum speed problems
which may cause a new trajectory creation. Moreover, the GPS
outputs a position every second, so no temporal gaps initially

exist; however, since the car is not moving, the algorithm
eliminates all points reported during the non-moving interval, and,
an artificial temporal gap is created (i.e., only the first point after
the car parking and the last before starting moving again exist in
the trajectory reconstruction algorithm). As a consequence, the

algorithm detects the temporal gap and creates new trajectories, as
needed, based only on the information that the tracked object
stopped moving for a sufficiently large temporal period (i.e.,
greater than gaptime).

3.2 ETL processing over trajectory data

Once trajectories have been constructed and stored in a MOD, the
ETL phase is executed in order to feed the TDW. Loading data
into the dimension tables is straightforward; however, this is far
more complex for the fact table. In particular, recalling Figure 3,

the main task is to fill in the measures with the appropriate
numeric values for each of the base cells that are identified by the
three foreign keys (PARTITION_ID, INTERVAL_ID, OBJPROFILE_ID)
of the fact table.

The COUNT_TRAJECTORIES measure for a base cell bc is calculated
by counting all the distinct trajectory ids that pass through bc. The
COUNT_USERS measure for a base cell bc is calculated similarly by
counting all the distinct object ids that pass through bc.

In order to calculate the AVG_DISTANCE_TRAVELED measure for a
base cell bc we define an auxiliary measure, called SUM_DISTANCE
as the summation of the length len(TP) of each portion TP of the
trajectories lying within bc. More formally,

bcTP

i

i

TPlenbcDISTANCESUM)()(_

Then, the AVG_DISTANCE_TRAVELED measure is computed by
dividing the SUM_DISTANCE by the COUNT_TRAJECTORIES measure:

)(_

)(_
)(__

bcESTRAJECTORICOUNT

bcDISTANCESUM
bcTRAVELEDDISTANCEAVG

Similar is the case for the AVG_TRAVEL_DURATION measure:

)(_

)(_
)(__

bcESTRAJECTORICOUNT

bcDURATIONSUM
bcDURATIONTRAVELAVG

where, SUM_DURATION is also an auxiliary measure defined as the
summation of the duration lifespan(TP) of each portion TP of the
trajectories inside bc.

bcTP

i

i

TPlifespanbcDURATIONSUM)()(_

In the same fashion, the AVG_SPEED measure is calculated by
dividing the auxiliary measure SUM_SPEED (i.e. the sum of the
speeds of each portion TP inside bc) with COUNT_TRAJECTORIES:

)(_

)(_
)(_

bcESTRAJECTORICOUNT

bcSPEEDSUM
bcSPEEDAVG

where

bcTP i

i

i
TPlifespan

TPlen
bcSPEEDSUM

)(

)(
)(_

Likewise, the AVG_ABS_ACCELER is a suchlike fraction

)(_

)(__
)(__

bcESTRAJECTORICOUNT

bcACCELERABSSUM
bcACCELERABSAVG

11

where SUM_ABS_ACCELER is a supplementary measure that
summates the absolute accelerations of all portions TP lying in bc

bcTP i

iinitifin

i
TPlifespan

TPspeedTPspeed
bcACCELERABSSUM

)(

)()(
)(__

and speedfin (speedinit) is the finally (initially, respectively)
recorded speed of the trajectory portion (TPi) in bc.

It is important to remark that all these measures are computed in

an exact way by using the MOD. In fact our MOD Hermes [14]
provides a rich palette of spatial and temporal operators for
handling trajectories. Unfortunately, rolling-up these measures is
not straightforward due to the count distinct problem [17] as it
will be discussed in detail in the next subsection.

As already mentioned, in order to calculate the measures of the
data cube, we have to extract the portions of the trajectories that
fit into the base cells of the cube. We consider a MOD of U user

profiles, N trajectories, M spatial partitions and K temporal
intervals. We propose two alternative solutions to this problem: (i)
a cell-oriented and (ii) a trajectory-oriented approach.

According to the cell-oriented approach (COA), we search for the
trajectory portions that lie within the base cells. The ETL
procedure for feeding the fact table of the TDW is described by
the proposed CELL-ORIENTED-ETL algorithm (Figure 6). First, we
search for the portions of trajectories under the concurrent
constraint that they reside inside a spatiotemporal cell C (line 4).

Then, the algorithm proceeds to the decomposition of the portions
with respect to the user profiles they belong to (lines 6-9).

Algorithm Cell-Oriented-ETL(D MODTrajectoryTable)

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

// For each pair <Region, Interval> forming a s-t cell Cj

FOR EACH cell Cj DO

 // Find the set of sub-trajectories inside the cell

 S = intersects(D, Cj);

 // Decompose S to subsets according to object profile

 FOR EACH subset S’ of S DO

 // Compute the various measures

 Compute_Measures(S’);

 END-FOR

END-FOR

Figure 6. The CELL-ORIENTED-ETL algorithm.

The efficiency of the above described COA solution depends on
the effective computation of the parts of the moving object
trajectories that reside in the spatiotemporal cells (line 4). This
step is actually a spatiotemporal range query that returns not only

the identifiers but also the portions of trajectories that satisfy the
range constraints. To efficiently support this trajectory-based
query processing requirement, we employ the TB-tree [15], a
state-of-the-art index for trajectories that can efficiently support
trajectory query processing.

According to the trajectory-oriented approach (TOA), we
discover the spatiotemporal cells where each trajectory resides in
(line 6). In order to avoid checking all cells, we use (line 4) a

rough approximation of the trajectory, its Minimum Bounding
Rectangle (MBR), and we exploit the fact that the granularity of
cells is fixed in order to detect (possibly) involved cells in
constant time. Then, we identify the portions of the trajectory that
fits into each of those cells (lines 8-15). This ETL procedure is
described by the proposed TRAJECTORY-ORIENTED-ETL algorithm
(Figure 7).

Algorithm Trajectory-Oriented-ETL(D MODTrajectoryTable)

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.

11.

12.

13.

14.

15.

16.

// For each Trajectory Ti

FOR EACH Trajectory Ti of D DO

 // Find the Minimum Bounding Rectangle of Ti

 MBRTi = Compute_MBR(Ti);

 // Find the set of s-t cells C that overlap with the MBR

 O = Overlap(C, MBRTi)

 // Find the portions (P) of trajectory Ti inside each cell

 FOR EACH O’ of O DO

 P = singlet_intersects(Ti, O’);

 //If the cell contains portions of the trajectory

 IF(P NOT NULL) THEN

 // Compute the various measures

 Compute_Measures(P);

 END-IF

 END-FOR

END-FOR

Figure 7. The TRAJECTORY-ORIENTED-ETL algorithm.

3.3 Addressing the distinct count problem

During the ETL process, measures can be computed in an
accurate way by executing MOD queries based on the formulas
provided in the previous section. However, once the fact table has
been fed, the trajectory and user identifiers are not maintained and

only aggregate information is stored inside the TDW.

The aggregate functions computing the super-aggregates of the
measures are categorized by Gray et al. [5] into three classes
based on the complexity required for this computation, starting
from a set of already available sub-aggregates:

 distributive (the super-aggregates can be computed from the

sub-aggregates),

 algebraic (the super-aggregates can be computed from the sub-

aggregates with a finite set of auxiliary measures), and

 holistic (the super-aggregates cannot be computed from sub-

aggregates, even if we employ auxiliary measures).

In our case, the aggregate functions to obtain super-aggregates for
the main measures discussed in Subsection 3.2 are classified as
holistic and as such they require the MOD data to compute super-
aggregates in all levels of dimensions. This is due to the fact that
COUNT_USERS, COUNT_TRAJECTORIES and, as a consequence, the

other measures defined in terms of COUNT_TRAJECTORIES are
subject to the distinct count problem [17]: if an object remains in
the query region for several timestamps during the query interval,
instead of counting this object once, it is counted multiple times in
the result.

Notice that once a technique for rolling-up the
COUNT_TRAJECTORIES measure is devised, it is straightforward to
define a roll-up operation for the AVG measures. In fact the latter

can be implemented as the sum of the corresponding auxiliary
measures divided by the result of the roll-up of
COUNT_TRAJECTORIES. As such, diminishing the calculations in
the numerator, hereafter, we focus on the (denominator) number
of distinct trajectories (COUNT_TRAJECTORIES); COUNT_USERS is
handled in a similar way.

In order to implement a roll-up operation over this measure, a first
solution is to define a distributive aggregate function which
simply obtains the super-aggregate of a cell C by summing up the

measures COUNT_TRAJECTORIES in the base cells composing C. In
the literature, this is a common approach to aggregate spatio-

12

temporal data but, as we will show in Section 4, it produces a very
rough approximation. Following the proposal in [10], an
alternative solution is to define an algebraic aggregate function.
The idea is to store in the base cells a tuple of auxiliary measures
that will help us to correct the errors caused due to the duplicates

when rolling-up.

More formally, let C(x,y),t,p be a base cell, which contains, among
the others, the following measures (it is worth noting that these
measures are loaded without errors into the base cells, by
exploiting the MOD functionalities):

 C(x,y),t,p.COUNT_TRAJECTORIES: the number of distinct

trajectories of profile p intersecting the cell (C(x,y),t,p.Traj for
short).

 C(x,y),t,p.cross-x: the number of distinct trajectories of profile p

crossing the spatial border between C(x-1,y),t,p and C(x,y),t,p,
where C(x-1,y),t,p is the adjacent cell (on the left) along with x-
axis.

 C(x,y),t,p.cross-y: the number of distinct trajectories of profile

p crossing the spatial border between C(x,y-1),t,p and C(x,y),t,p,
where C(x,y-1),t,p is the adjacent cell (below) along with y- axis.

 C(x,y),t,p.cross-t: the number of distinct trajectories of profile p
crossing the temporal border between C(x,y),t-1,p and C(x,y),t,p ,
where C(x,y),t-1,p is the adjacent cell (below) along with t- axis.

Let C(x’,y’),t’,p’ be a cell consisting of the union of two adjacent cells
with respect to a spatial/temporal dimension, for example

C(x’,y’),t’,p’ = C(x,y),t.p C(x+1,y),t,p (when aggregating along x- axis). In

order to compute the super-aggregate corresponding to C(x’,y’),t’,p’,
we proceed as follows:

C(x’,y’),t’,p’.Traj = C(x,y),t,p.Traj + C(x+1,y),t,p.Traj – C(x+1,y),t,p .cross-x

The other measures associated with C(x’,y’),t’,p’ can be computed as
follows:

C(x’,y’),t’,p’ .cross-x = C(x,y),t,p .cross-x

C(x’,y’),t’,p’ .cross-y = C(x,y),t,p .cross-y + C(x+1,y),t,p .cross-y

C(x’,y’),t’,p’ .cross-t = C(x,y),t,p .cross-t + C(x+1,y),t,p .cross-t

The computation of C(x’,y’),t’,p’.Traj can be thought of as an
application of the well-known Inclusion/Exclusion principle for

sets: A B = A + B A B . Note that in some cases

C(x+1,y),t,p.cross-x is not equal to A B , and this may introduce

errors in the values returned by this algebraic function. In fact, if a
trajectory is fast and agile, it can be found in both C(x,y),t,p and
C(x+1,y),t,p without crossing the X border (since it can reach
C(x+1,y),t,p by crossing the Y borders of C(x,y),t,p and C(x+1,y),t,p).

It is worth noticing that the agility of a trajectory affects the error
in the roll-up computation. In fact, a trajectory coming back to an

already visited cell can produce an error. In the following figures
we illustrate the two main kinds of error that the algebraic
aggregate function can introduce.

In Figure 8a, if we group together the cells C3 and C4, we obtain
that the number of distinct trajectories is C3.Traj + C4.Traj –
C4.cross-x = 1+1–0 = 2. This is an overestimate of the number of
distinct trajectories. On the other hand, in Figure 8b, if we group
together C1 and C2 we correctly obtain C1.Traj + C2.Traj –

C2.cross-x = 1+1–1 = 1, similarly by aggregating C3 and C4.

However, if we group C1 C2 with C3 C4 we obtain C1 C2.Traj

+ C3 C4.Traj – C1 C2.cross-y = 1+1–2 = 0. This is an

underestimate of the number of distinct trajectories.

Figure 8. a) Overestimate of Traj. b) Underestimate of Traj.

In order to give a bound to this kind of errors, let us focus on a

single trajectory. This is not a limitation because the values of the
measures Traj, cross-x, cross-y, and cross-t can be computed by
summing up the contributions given to such a measure by each
trajectory in isolation. Since the aggregation operations are linear
functions, the above property also holds for aggregated cells.

First of all, let us introduce the concept of uni-octant sequence.
We call uni-octant sequence a maximal sequence of connected
segments of a trajectory whose slopes are in the same octant. It is

evident that a trajectory can be uniquely decomposed into uni-
octant sequences.

A uni-octant sequence us can traverse a cell C only once, i.e. if us
starts from C it can only exit from C, otherwise it can only enter
once in C. As a consequence, if a trajectory consists of a single
uni-octant sequence it does not produce any error in the roll-up
computation for the measure COUNT_TRAJECTORIES. In fact, as
discussed above, errors can only arise when a trajectory visits a
cell at least twice.

This can be generalised to a trajectory T composed by several uni-
octant sequences. In this case, the computed value of the measure
Traj in an aggregated cell C is limited by the number of uni-
octant sequences of T intersecting C. This is an upper bound that
can be reached, as shown in Figure 8a.

Note that in order to face the distinct count problem when
aggregating cells with different profiles, analogously to what we
did for the spatial and temporal dimensions, it could be helpful to

consider a measure cross-P, specifying the number of distinct
trajectories changing their profile from one cell to an adjacent
one. However, since profile changes are rather rare in real-world
scenarios and only appear in long term situations, we omit
computing cross-P and we simply use the distributive aggregate
function sum for this kind of aggregations. (In any case, when
there is need cross-P can be added in our framework without
additional difficulty.)

4. EXPERIMENTATION WITH A REAL-

WORLD TDW
In this section, we evaluate the proposed solutions by
implementing the TDW architecture (Figure 3) for a real-world
application. More specifically, we used a large real dataset: a part
of the e-Courier dataset [3] consisting of 6.67 millions of raw
location records (a file of 504 Mb, in total), that represent the
movement of 84 couriers moving in London during a one month
period (July 2007) with a 10 sec sample rate. For all the
experiments we used a PC with 1 Gb RAM and P4 3 GHz CPU.

C1

C3

C2

C4

C2 C1

C4 C3

13

Default values of the trajectory reconstruction parameters were set
as follows: temporal gap 900 sec, spatial gap 5 Km, maximum
speed 50 m/s, maximum noise duration 600 sec, and tolerance
distance 20 m, and the volume of the raw locations dataset varied
from 0.5 millions of records up to the full size available. This

setting resulted in a maximum of 4263 trajectories (which
corresponds to an average 1.64 trajectories per courier per day).

We concluded in the above values of parameters after analyzing
the behaviour of different candidate values and assessing the
number of produced trajectories. As a first consideration, the
selected value for maximum speed of vehicles is reasonable.
Secondly, different values of distance accuracy parameter have
not an effect on the number of produced trajectories. Below, we

illustrate the results of analysis for: temporal gap (Figure 9),
maximum noise duration (Figure 9) and the spatial gap parameters
(Figure 10). The number of produced trajectories seems to stay
stable from the point selected on.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

4000

4100

4200

4300

4400

4500

4600

4700

4800
n

u
m

b
e
r

o
f

tr
a
je

c
to

ri
e
s

(a
ff

e
c
te

d
 b

y
 d

u
ra

ti
o

n
)

n
u

m
b

e
r

o
f

tr
a
je

c
to

ri
e
s

(a
ff

e
c
te

d
 b

y
 n

o
is

e
 d

u
ra

ti
o

n
)

Time (sec)

Duration Noise Duration

Figure 9. The effect of temporal gap and noise duration

parameters

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000 12000

n
u

m
b

e
r

o
f

tr
a
je

c
to

ri
e
s

distance (meters)

Figure 10. The effect of spatial gap parameter

40000

45000

50000

55000

60000

0

50

100

150

0.5 1.5 2.5 3.5 4.5 5.5 6.6 p
ro

c
e
s
s
in

g
 r

a
te

(r

e
c
o

rd
s
/s

e
c
)

p
ro

c
e
s
s
in

g
 t

im
e

(s
e
c
)

records processed (in millions)

Figure 11. Performance of trajectory reconstruction

(solid line: processing time; dotted line: processing rate)

The next experiment, illustrated in Figure 11, is about the
efficiency of the TRAJECTORY-RECONSTRUCTION algorithm,

proposed in Subsection 3.1. It is clear that the TRAJECTORY-
RECONSTRUCTION algorithm performs linear with the size of the

input dataset (and allows the processing of the full dataset in
about 2 min). Furthermore, the average processing rate is almost
stable (~ 50K records/sec).

In the next set of experiments, we evaluate the effectiveness of the
TRAJECTORY-RECONSTRUCTION algorithm in the case of a large

number of users and towards the goal of processing input in real-
time. In particular, we measure its processing time for various
sample rates, as illustrated in Figure 12. According to this
experiment, by choosing e.g. a 20 sec sample rate the algorithm
can handle in real time up to 1000K objects, which is a really
large number for real-world applications (at least nowadays). The
conclusion from this experiment is that the proposed
TRAJECTORY-RECONSTRUCTION algorithm is effective for real-time

processing by keeping a trade-off between the number of users to
be supported and the sample rate set for transmitting their
location.

0

500

1000

1500

2000

40000

45000

50000

55000

60000

10 15 20 25 30

o
b

je
c
ts

 i
n

 r
e
a
l-

ti
m

e

(t
h

o
u

s
a
n

d
s
)

p
ro

c
e
s
s
in

g
 r

a
te

(r

e
c
o

rd
s
/s

e
c
)

sample rate (sec)

Figure 12. The effect of sample rate in real-time processing

(solid line: objects in real-time; dotted line: processing rate)

For the evaluation of the ETL process we compared the
performance of the TOA vs. the index-based COA approaches.
Both approaches are implemented on the MOD system Hermes,
presented in [14]. We used two different granularities to partition
the spatial and the temporal hierarchies; a spatial grid of equally
sized squares of 10×10 Km2 (100×100 Km2, respectively) and a

time interval of one (six, respectively) hours. The results of the
four cases are illustrated in Figure 13, where it is clear that the
choice of a particular method is a trade-off between the selected
granularity level and the number of trajectories.

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0 1000 2000 3000 4000 5000

p
ro

c
e
s
s
in

g
 t

im
e
 (

lo
g

(m
in

))

number of trajectories

COA granularity
(10x10km², 1
hour)
TOA granularity
(10x10km², 1
hour)
COA granularity
(100x100km², 6
hours)
TOA granularity
(100x100km², 6
hours)

Figure 13. Comparison of alternative ETL processes

We complete the experimental study with some results on the
trajectory aggregation issue (Figure 14). We would like to assess
the accuracy of the approximations of the measure

COUNT_TRAJECTORIES computed in roll-up operations by using
the distributive and the algebraic functions presented in
Subsection 3.3. To this aim we consider the normalized absolute
error proposed by Vitter et al. [18]: For all the OLAP queries q in
a set Q we define this error as follows:

14

Qq
q

Qq
qq

M

MM
Error

||

where qM is the approximate measure computed for query q,

while qM is its exact value.

We assume, as base granularity g, a spatial grid of equally sized
squares of 10×10 Km2 and a time interval of one hour. Then our
queries compute the measure TRAJECTORIES for larger
granularities g’ = n×g, with n > 1.

1

10

100

1000

10000

2 4 8 16 32 64

e
rr

o
r

(%
)

granularity

distributive

algebraic

Figure 14. Distributive vs. algebraic aggregate functions

The distributive aggregate function has an error which always
exceeds 100% and quickly grows as the roll-up granularity
increases. Instead, as expected, the computations based on the
algebraic function are always more precise than those based on
the distributive one and they are accurate for small granularities.
Still, the error grows up for large granularities but it never exceeds
100%. Although the corresponding experiments are not reported

here, it is worth noting that starting from smaller base
granularities g and using the algebraic function we get a better
accuracy, with errors under 10% for small multiples of g.

5. CONCLUSIONS
In this paper, we propose solutions for the efficient and effective

development of trajectory warehouses. To the best of our
knowledge, this is the first work that supports all the required
steps for building a TDW, from trajectory reconstruction and
MOD loading, to data cube feeding and aggregating over
summary information. More specifically, we proposed techniques
for the solution of the trajectory reconstruction problem, for
supporting ETL of trajectory data, and for addressing the problem
of measure aggregation, giving particular attention to the distinct
count problem. Our approach has been experimentally tested in a

large real dataset and has been shown to be efficient.

As part of our future work, we plan to examine new measures for
the trajectory warehouse, specifically suited for trajectories. An
example of such a measure is the so-called typical trajectory (e.g.
[4], [9]) that describes the trend of movement within a cell. Also,
we plan to explore the analytical capabilities of the proposed
framework by applying DM techniques over the aggregated data
stored in the TDW.

6. ACKNOWLEDGMENTS
We thank S. Orlando, A. Roncato and C. Silvestri for the
insightful discussions on the distinct count problem. Research
partially supported by the EU FP6-14915 IST/FET Project
GeoPKDD (Geographic Privacy-aware Knowledge Discovery and

Delivery). Gerasimos Marketos was also supported by a
PENED‟2003 grant funded by the General Secretariat for
Research and Technology of the Greek Ministry of Development.

7. REFERENCES
[1] Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A.,

Naughton, J., Ramakrishnan, R., and Sarawagi. S. On the
computation of multidimensional aggregates. Proc. VLDB,
1996.

[2] Choi, W., Kwon, D., and Lee, S. Spatio-temporal data
warehouses using an adaptive cell-based approach. DKE,
59(1):189-207, 2006.

[3] eCourier.co.uk dataset, http://api.ecourier.co.uk/. (URL valid
on May 14, 2008).

[4] Giannotti, F., Nanni, M., Pinelli, F., and Pedreschi, D.
Trajectory pattern mining. Proc. KDD, 2007.

[5] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart,

D., Venkatrao, M., Pellow, F., and Pirahesh, H. Data cube: A
relational aggregation operator generalizing groub-by, cross-
tab and sub-totals. DMKD, 1(1):29-54, 1997.

[6] Güting, R.H., and Schneider, M. Moving Object Databases,
Morgan Kaufman Publishers. 2005.

[7] Han, J., Stefanovic, N., and Koperski, K. Selective
Materialization: An Efficient Method for Spatial Data Cube
Construction. Proc. PAKDD, 1998.

[8] Jensen, C.S., Kligys, A., Pedersen, T.B., Dyreson, C.E., and
Timko, I. Multidimensional data modeling for location-based
services, The VLDB Journal, 13:1–21, 2004.

[9] Lee, J., Han, J., and Whang, K. Trajectory Clustering: A
Partition-and-Group Framework. Proc. SIGMOD, 2007.

[10] Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., and
Silvestri, C. Spatio-Temporal Aggregations in Trajectory
Data Warehouses. Proc. DaWaK, 2007.

[11] Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., and
Silvestri, C. Trajectory Data Warehouses: Design and
Implementation Issues. JCSE, 1(2):240-261,2007.

[12] Papadias, D., Kalnis, P., Zhang, J., and Tao, Y. Efficient
OLAP Operations in Spatial Data Warehouses. Proc. SSTD,
2001.

[13] Pelekis, N., Raffaetà, A., Damiani, M.-L., Vangenot, C.,
Marketos, G., Frentzos, E., Ntoutsi, I., and Theodoridis, Y.
Towards Trajectory Data Warehouses. Chapter in Mobility,
Data Mining and Privacy: Geographic Knowledge
Discovery. Springer-Verlag. 2008.

[14] Pelekis, N., Theodoridis, Y., Vosinakis, S. and
Panayiotopoulos, T. Hermes - A Framework for Location-
Based Data Management. Proc. EDBT, 2006.

[15] Pfoser, D., Jensen, C.S., and Theodoridis, Y. Novel
Approaches to the Indexing of Moving Object Trajectories,
Proc. VLDB, 2000.

[16] Tao, T., and Papadias, D. Historical Spatio-Temporal
Aggregation. ACM TODS, 23(1):61-102, 2005.

[17] Tao, Y., Kollios, G., Considine, J., Li, F., and Papadias, D.
Spatio-Temporal Aggregation Using Sketches. Proc. ICDE,
2004.

[18] Vitter, J.S., Wang, M., and Iyer, B. Data Cube
Approximation and Histograms via Wavelets. Proc. CIKM,
1998.

15

http://api.ecourier.co.uk/
http://www.cs.uiuc.edu/~hanj/pdf/sigmod07_jglee.pdf
http://www.cs.uiuc.edu/~hanj/pdf/sigmod07_jglee.pdf
http://www.cs.uiuc.edu/~hanj/pdf/sigmod07_jglee.pdf

