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ABSTRACT
Typically, recommendations are computed by considering
users similar to the user in question. However, scanning the
whole database of users for locating similar users is expen-
sive. Existing approaches build user profiles by employing
full-dimensional clustering to find sets of similar users. As
the datasets we deal with are high-dimensional and incom-
plete, full-dimensional clustering is not the best option. To
this end, we explore the fault tolerance subspace clustering
approach that detects clusters of similar users in subspaces
of the original feature space and also allows for missing val-
ues. Our experiments on real movie datasets show that the
diversification of the similar users through subspace cluster-
ing results in better recommendations comparing to tradi-
tional collaborative filtering and full dimensional clustering
approaches.

1. INTRODUCTION
With the growing complexity of WWW, users often find

themselves overwhelmed by the mass of available choices.
Shopping for DVDs, books or clothes online becomes more
and more difficult, as the variety of offers increases rapidly
and gets unmanageable. To facilitate users in their selec-
tion process, recommendation systems provide suggestions
on items, which could be interesting for the respective user.
Typically, user recommendations are established by con-
sidering users with similar preferences to the query user.
Scanning the whole database to find such like-minded users,
though, is costly. More efficient approaches have been pro-
posed that build user models and exploit these models for
recommendations. For example, [4] applies full-dimensional
clustering to organize users into clusters and uses these clus-
ters, instead of linear scanning the database, for predictions.

Full dimensional clustering though, is not the best option
for the recommendation domain, where there might exist
thousands to millions of items and therefore, finding similar
users with respect to all the dimensions might be difficult.
Feature reduction techniques like PCA are not appropriate
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for this problem since they provide a global reduction of
the feature space, which is not appropriate for cases where
different dimensions are relevant for different clusters. For
example, there might exist a cluster of users based on come-
dies, part of which might belong to another cluster based on
dramas, but there might be no cluster of users with interest
in both comedies and dramas. To deal with this issue, we
propose to employ subspace clustering [3], that extracts both
clusters of users and dimensions, i.e., items, based on which
users are grouped together. There is also another motivation
behind the subspace clustering choice: as users possibly be-
long to more than one subspace cluster (each cluster defined
upon different items), this broadens our options for selecting
like-minded users for a given user. Moreover, employing in
the recommendation process users that differ qualitatively
in terms of the items upon which their selection was made,
diversifies the set of like-minded users.

The rest of the paper is organized as follows. Section 2 of-
fers an introduction on recommendations. Section 3 overviews
fault tolerance subspace clustering and explains how it can
be employed for recommendations. Section 4 presents our
experimental results and Section 5 concludes our work.

2. BACKGROUND AND LIMITATIONS
Assume a recommendation system, where I is the set of

items to be rated and U is the set of users in the system. A
user u ∈ U might rate an item i ∈ I with a score rating(u, i)
in [0.0, 1.0]; let R be the set of all ratings. Typically, the
cardinality of the item set I is high and users rate only a
few items. The subset of users that rated an item i ∈ I is
denoted by U(i), whereas the subset of items rated by a user
u ∈ U is denoted by I(u).

For items unrated by users, recommendation systems es-
timate a relevance score, denoted as relevance(u, i), u ∈ U ,
i ∈ I. In this work, we follow the collaborative filtering ap-
proach: similar users are located via a similarity function
simU(u, u′) that evaluates the proximity between u, u′ ∈ U .
We use Fu to denote the set of the most similar users to u,
hereafter, referred to as the friends of u: Fu = {u′ ∈ U :
simU(u, u′) ≥ δ}, where δ is a similarity threshold.

Given a user u and his friends Fu, if u has expressed no
preference for an item i, the relevance of i for u is given by:

relevanceFu(u, i) =

∑
u′∈Fu

simU(u, u′)rating(u′, i)∑
u′∈Fu

simU(u, u′)

After estimating the relevance scores of all unrated user
items, the top-k rated items are recommended to the user.

One of the key issues in collaborative filtering approaches



is the identification of the set Fu of a user u ∈ U . The two
general strategies in this direction are: (i) Naive approach:
Retrieve all users U and return as friends of a user u, those
whose similarity to u is above the threshold δ. (ii) Full
dimensional clustering approach: Partition users in U based
on their similarity, so that, users that exhibit high similarity
are placed in the same cluster. The friends of a user are all
those users belonging to his cluster. The typically considered
clustering here, is full dimensional, i.e., over all items of I.

The naive approach would be extremely inefficient in large
systems, since it requires the online computation of the set
of friends for each query user. Moreover, since this appears
to be an online method, the set of friends should be com-
puted from scratch every time a user request arrives, even
if the user has requested recommendations just before. One
way to overcome the limitations of the naive approach, is
to build some users model and directly employ this model
for recommendations. Full dimensional clustering has been
used towards this direction to organize users into clusters
of similar ones [4]. The pre-computed clusters are then em-
ployed to speed up the recommendation process; the friends
of a given user u correspond roughly to the users that belong
to the same cluster as u. However, not all similar users to u
belong to its cluster and therefore the friends set might be
incomplete and too narrow.

3. SUBSPACE CLUSTERING FOR USER
RECOMMENDATIONS COMPUTATION

Subspace clustering aims at detecting clusters embedded
in subspaces of a high-dimensional dataset [3]. Clusters may
consist of different combinations of dimensions, while the
number of relevant dimensions per cluster may vary strongly.
To restrict the search space, only axis-parallel subspaces are
searched through for clusters. A subspace S describes a sub-
set of items, S ⊆ I. A subspace cluster C is then described
in terms of both its members U ⊆ U and subspace of dimen-
sions S ⊆ I upon which it is defined as C = (U, S).

The vast majority of subspace clustering algorithms works
on complete datasets. However, our data is characterized
by many missing values, since users rate only a few items.
Recently, fault tolerant subspace clustering [2] has been pro-
posed to handle sparse datasets. The main idea of this ap-
proach is that clusters including missing values can still be
valid, as long as the amount of missing values does not have
a negative influence on the cluster’s grade of distinction.

To restrict the number of missing values in a subspace
cluster, thresholds with respect to the number of missing
items, the number of missing users and their combination,
are used. These thresholds are adapted from [2] to the rec-
ommendations domain. Users featuring a missing value for
item i ∈ I are included in U?(i) = {u ∈ U |rating(u, i) =?},
whereas I?(u) = {i ∈ I|rating(u, i) =?} holds those items
having a missing value for user u ∈ U .

User Tolerance: Each user in a subspace cluster must not
contain more than a specific number of missing item ratings.
That is, ∀u ∈ U : |I ∩ I?(u)| ≤ εu · |I|, where εu ∈ [0, 1] is
the user tolerance threshold.

Item Tolerance: Each item in a subspace cluster should
not contain too many missing values. That is, ∀i ∈ I :
|U ∩ U?(i)| ≤ εi · |U |, where εi ∈ [0, 1] is the item tolerance
threshold.

Pattern Tolerance: The total number of missing values in

a subspace cluster must not exceed the pattern tolerance
threshold εg ∈ [0, 1]. That is,

∑
u∈U |S ∩ I?(u)| ≤ εg · |U | · |S|.

Thus, a cluster C = (U, S) is a valid fault tolerant subspace
cluster if the number of missing items per user does not
violate εu, the number of missing users per item does not
violates εi and the total number of missing values is bounded
with respect to εg.

Bottom-up subspace clustering approaches make use of
the monotonicity property : if C = (U, S) is a subspace
cluster, then in each subset S′, S′ ⊆ S, there exists a su-
perset of users, so that, this set is a subspace cluster as
well. The fault tolerance model defined so far, does not fol-
low the monotonicity property. Therefore, [2] suggests en-
closing cluster approximations, which form supersets of the
actual clusters, i.e., they include more users than the ac-
tual subspace clusters do. These approximations follow the
monotonicity property. A subspace cluster can be extended
by adding some dimensions up to a dimensionality of mx.
Thus, each fault tolerant subspace cluster C = (U, S), with
|S| ≤ mx, is mx-approximated by a maximal fault tolerant
subspace cluster A = (UA, S), established by the thresholds
εu = min{εu · mx

|S| , 1} and εi = εg = 1. The rationale is to

extend the subspace clusters by some dimensions, in order
to create enclosing approximations, which fulfill the fault
tolerance thresholds.

In [2] the grid-based fault tolerant subspace clustering algo-
rithm FTSC is proposed that integrates the fault tolerance
concepts to the grid-based subspace clustering algorithm
CLIQUE [1]. As in CLIQUE, the data space is partitioned
into non-overlapping rectangular grid cells by partitioning
each item into g equal-length intervals and intersecting the
intervals. Clusters consists of dense cells, where density is
quantified in terms of a density threshold minPts.

In FTSC, users with missing values/ratings might also be
part of the clusters. To this end, an extra interval is allo-
cated for each item, where users with missing values for the
respective item are placed in. To generate cluster approxi-
mations, except for the item intervals with existing values,
we also consider the item intervals for missing values. Thus,
a cluster approximation consists of the users in the respec-
tive cluster cells plus the users obtained by considering the
intersection with the missing values intervals. For an ef-
ficient generation of cluster approximations, we partition a
set of users UA according to the amount of missing values per
user, i.e., (UA, S) = ([U0

A, U
1
A, · · · , Ux

A], S), where U i
A is the

users with exactly i missing values. To avoid analyzing all
possible subspaces, the monotonicity of approximations and
the fault tolerance thresholds are exploited. To generate the
actual clusters from the approximations, the approximation
list of users is traversed and users are added to the cluster.
Users with no missing values (positioned in the beginning of
the list) are added to the cluster, whereas users with miss-
ing values are gradually added to the cluster if they do not
violate the fault tolerance thresholds εu, εi and εg.

To generalize, through subspace clustering, we receive like-
minded users for a query user u, from several subspace clus-
ters whose u is member of. Combining all users from the
different subclusters u belongs to, is advantageous, as we
gain an extensive selection of like-minded people for u, which
might be based on different subsets of items. Thus, we are
able to reflect on different characteristics u might feature in
order to calculate the most promising recommendations for
him/her.



4. EXPERIMENTAL EVALUATION
In this section, we evaluate our approach using a Movie-

Lens dataset1 that contains 100,000 ratings given by 983
users for 1,682 movie items (ML-100K). We compare the fol-
lowing approaches: (i) The naive approach that performs a
sequential scan of the database to retrieve the set of friends
for a user. (ii) The fullClu approach that organizes users
into clusters using a hierarchical clustering algorithm in the
full item space I. The friends of a user are his/her cluster
members. (iii) The gridFTSC approach that organizes users
into possibly more than one clusters defined upon different
subspaces of items.

We evaluate both the efficiency and quality of recommen-
dations achieved by the different algorithms. Regarding ef-
ficiency, we study how the runtime of the algorithms is af-
fected by the different parameters. To evaluate the quality
of user recommendations, we use predictive accuracy mea-
sures, namely, MAE and RMSE, that directly compare the
predicted user ratings with the actual user ratings. MAE
(Mean Absolute Error) signifies the average of absolute er-
rors of the predictions compared to the actual given ratings
for a user, whereas RMSE (Root Mean Squared Error) ex-
presses the average of squares of absolute errors. The smaller
these values, the better the quality of the recommendations.
We also study the number and size of generated clusters as
an indirect measure of quality for the different approaches.
The intuition is that when a user belongs to a very small
cluster, his/her friends selection is limited and therefore the
recommendations are worse comparing to a user that gets
recommendations from a larger pool of friends.

Experiments run on a 2.5 GHz Quad-Core i5-2450M archi-
tecture with 8.00 GB RAM and a 64-bit operating system.
The distance between two users is evaluated as the Euclidean
distance over their commonly rated items. When a specific
subspace is considered, the distance relies only on the items
that comprise the subspace.

4.1 Parameter Settings and Efficiency
We study the execution time of the different methods un-

der different parameter settings, as well as the number and
dimensionality of the resulting clusters. The execution time
is a performance measure, whereas the number of result-
ing clusters provides some hints on the quality of the rec-
ommendations. We do not report on the naive approach
here; according to our previous work [4], it takes four times
longer than the full clustering approach. Regarding fullClu,
the smaller the number of clusters, the better, since a small
number of clusters might be an indication of clusters of large
cardinality and this is exactly what we need to receive a
broad selection of friends. On the contrary, for gridFTSC, a
good clustering for recommendations is one featuring many
subspace clusters. This is because each user potentially be-
longs to several clusters, which again offers a wider selection
of friends.

We experimented with different parameters, an overview
is shown in Table 1. We assign unique identifiers (IDs) to the
parameter settings for each approach and use both approach
name and parameter settings ID hereafter to denote the ap-
proach and the selected parameters. The runtime and the
number of generated clusters for each approach and setting
is depicted in Figure 1.

1http://www.grouplens.org/node/73
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Figure 1: Runtime (in logarithmic scale) and #clusters for

different parameter settings (c.f. Table 1).

fullClu: δ has a strong impact on the algorithm performance.
The higher the value of δ, the lower the number of generated
clusters and therefore, the bigger (in average) the resulting
clusters. This is expected since more clusters get merged by
the hierarchical clustering when δ is relaxed. For δ = 0.2,
the cluster population is in the [3-15] users per cluster range
and there are three big clusters containing 27, 38 and 96
users, respectively. For δ = 0.5, the range is [3-27] and there
is one big cluster of 138 users. For δ = 0.7, the range is [3-28]
and the big cluster of 138 users still exists. The execution
time also depends on δ, the more clusters are merged the
longer the algorithm runs.

Comparing to the other approaches, the number of gener-
ated clusters in fullClu is the smallest. While the runtime of
the algorithm is the best compared to the other approaches,
the clustering result might be problematic for determining
users’ friends. For example, if we want to find the friends
of a user belonging to one of the (many) small clusters, the
friends selection is very limited and therefore, the quality of
the recommendations might be poor. The problem might
be not so severe for a user belonging to a (usually one) big
cluster, as his/her friends selection is more broad.
gridFTSC : The lower the density threshold minPts, the
larger the number of generated clusters and the more higher-
dimensional the derived clusters are. This is due to the fact
that with a lower density threshold more grid cells are con-
sidered as dense. For the same reason, the runtime increases
with a decreasing value of minPts, as the number of clus-
ters and the number of items to be considered for extension
increases. For minPts = 50, the algorithm detects 494 sub-
space clusters, whose dimensionality lies in [1-4] range. The
higher-dimensional subspace clusters are based mostly on
the same subset of items and just differ in one or two ad-
ditional ones. This implies that the dataset features some
prominent items, which “derive” big clusters, like items 1,
12, 50, 98, 100, 127, 172 and 174. Many of the detected
clusters, include these items. A closer inspection of the
dataset confirms our observation: movies corresponding to
these ids received 300 - 400 ratings compared to consider-
ably less ratings given for other movies (about 50 - 100).
Also, many 1-item subspace clusters were detected, which
could not be extended to a higher dimensionality due to
violation of the density threshold minPts. When we lower
the threshold, the number of clusters as well as the run-
ning time increase drastically, however the maximum sub-
space dimensionality of the clusters not; the maximum di-
mensionality is 5 for both minPts = 40 and minPts = 50.
Higher-dimensional subspace clusters are desirable, as they
demonstrate a higher agreement in terms of preference of the
included users. Therefore, the choice of a value for minPts
is a trade-off between algorithm run-time and clustering re-
sult quality. Comparing to the other approaches, gridFTSC



Table 1: ML-100K dataset: Parameter settings and results
Parameter settings Runtime # Clusters Setting ID

fullClu δ = 0.2 39s 585ms 141 1
δ = 0.5 41s 115ms 87 2
δ = 0.7 41s 237ms 83 3

gridFTSC* minPts = 50, grid = 3 13min 33s 55ms 494 1
minPts = 40, grid = 3 29min 53s 364ms 1038 2
minPts = 30, grid = 3 2h 3min 41s 655ms 4308 3

(*) parameters for gridFTSC: εo = 0.4, εs = 0.3, εg = 0.4
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Figure 2: Top-10 user recommendations statistics (ML-

100K dataset, Setting 1 from Table 1).

generates the larger number of clusters and therefore, it is
the slowest method.

To conclude, although fullClu is fast, the clustering qual-
ity is questionable as it consists of several very small clusters,
which might lead to poor recommendations for the query
users. On the contrary, gridFTSC results in many subspace
clusters and a large subspace variety.

4.2 Quality of User Recommendations
Here, we examine the qualitative differences of the dif-

ferent approaches. We select specific users having different
demographics (occupation, age range and sex) and a number
of ratings equal to the average number of ratings per user,
and compute recommendations for all different approaches.
We chose to issue the 10 most promising (top-10) recommen-
dations to the respective user. For the naive approach, the
distance threshold of the fullClu approach was employed.
Due to lack of space, we report here on a single user.

The selected user is a 34-year old educator, who has sub-
mitted 70 ratings. According to his/her ratings, he seems to
be interested in genres like Drama (30 ratings), Action (18
ratings), Comedy (18 ratings) and Romance (14 ratings),
whereas he usually does not watch Documentaries, Fantasy,
Horror or Western movies (0 ratings). For recommendation
calculations, we employed the parameters settings 1 (c.f.,
Table 1), which give the less promising clustering results for
all different approaches. For fullClu, setting 1 results in the
smallest clusters and therefore, in a limited choice of friends.
For gridFTSC, this setting also results in the lower number
of generated subspace clusters and the lower number of con-
sidered dimensions for these clusters (Figure 2).

The runtime is a great deal lower when employing user
clusters. The naive approach scans the whole database to
determine the friends of the query user. Moreover the result
set is big (912 out of 942) due to the high distance threshold.
fullClu is the fastest method by far, however its quality of
predictions suffers heavily from the small set of friends con-
sidered. The set of friends generated by gridFTSC is larger
than the one generated by fullClu but still small compared
to the one generated by naive. MAE and RMSE, however,
show that the quality of the predictions by gridFTSC in-
creases when compared to naive. This is due to a more

careful selection of friends. gridFTSC is slower than full-
Clu but much faster than naive. With respect to the naive
approach, gridFTSC agrees on 7 out of 10 recommended
items, whereas fullClu shares only 3 items with the other
approaches. This poor performance is due to the narrow se-
lection of friends, as our user did belong to a small cluster.

To conclude, the fault tolerant subspace clustering ap-
proach seem to overcome the friends selection problems of
naive (very broad) and fullClu (very narrow) by providing
a wider selection of diverse friends at a reasonable runtime.

5. CONCLUSIONS
In this paper, we integrate subspace clustering into the

recommendation process. Our experiments show that the
fault tolerant subspace clustering approach outperforms both
the naive approach that scans the whole database to derive
similar users and the fullClu approach that pre-computes
full dimensional clusters of users and relies upon these clus-
ters for the recommendations. This suggests, that the diver-
sity in the results due to subspace clustering has a positive
effect on the recommendation process.

In our current work, we study how to explore density-
based subspace clustering approaches in order to detect ar-
bitrarily shaped clusters, that seem more appropriate for
our problem. Interestingly, we can adapt the candidate ap-
proximations construction by using density-based clusters,
instead of considering grid-cells. The difficulty that emerges
when transferring fault tolerance to density-based subspace
clustering is that density-based approaches use a distance
function and so, we need to evaluate distances between users,
even though they might contain missing values.
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