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Abstract— In this paper, the problem of creating an accurate
3D grid map by an autonomous mobile robot is addressed. The
proposed algorithm focuses on two aspects of 3D mapping, an
incremental and online segmentation process for surface extrac-
tion and a surface analysis based on uncertainty. The algorithm
is based on an uncertain grid formulation that is used to store
3D point clouds collected by a robot with known poses. Unlike
most grid based approaches that consider the distribution of
the spatial attributes of the 3D points only for assigning these
points into 3D cells, the proposed approach uses the uncertain
3D grid structure and propagates the uncertainty of the raw
point clouds to the normal vectors and estimates the uncertainty
of the plane parameters. For efficient surface extraction a state
of the art stream clustering algorithm is employed. Experiments
show that this grid formulation captures the actual distribution
of points in the environment and leads to spatial models which
contain additional information about their uncertainty.

I. INTRODUCTION

Robotic mapping is the process of using a mobile robot
for building a model of an unknown environment by col-
lecting data through the robot sensors [1]. Mapping has
immense importance in robotics, since crucial tasks such as
navigation, planning and scene understanding rely heavily
on the existence of accurate maps [2], [3]. The increase in
computational power and the progress in sensor technology
within the last decade has caused a shift in research focus
from the construction of 2D maps towards building accurate
3D spatial models [4], [5]. Many approaches in this area
utilize 3D grid structures to perform down-sampling of the
original data and filter out noisy points. However, building
meaningful 3D maps in an online fashion still remains a chal-
lenging problem. The high arrival rate and the huge amounts
of collected data raise efficiency issues while the inherent
errors of data collection complicate the data association.

Abstracting from point clouds towards 3D grid structures
is a first step towards understanding the surroundings of
the robot. Further processing has been proposed in order
to extract more descriptive spatial entities such as planes
and surfaces that lie in the environment. A variety of plane
segmentation techniques has been proposed so far and most
of them detect planes by either working with the spatial

attributes of the points as in the RANSAC algorithm [6] or
by extracting the normal vectors for each data point [7].

Contrary to most existing approaches, we propose a
method that propagates the uncertainties of the raw data
to the normal vectors and finally to the estimated plane
parameters. In this way, our method can filter out cells with
noisy normal vectors and also provide an estimation of the
quality of each plane. Such a method is suitable for a mobile
robot that navigates in an unknown environment and collects
3D point clouds through its sensors. The assumption that the
robot poses are already known is followed. The proposed
methods consists of three main components: (i) point as-
signment to the 3D grid, (ii) normal vector estimation and
(iii) surface clustering. Once the robot receives a single scan
of the environment, the first step involves the assignment of
the points to the grid cells. The center of each grid cell
represents a random variable based on the distribution of the
points as well as their inherent uncertainty. The algorithm
then tries to estimate the normal vector for the grid cells
based on their nearest neighbors. The final step involves an
uncertain stream clustering algorithm, which merges local
clustered grid cells into one surface based on the spatial
layout and the normal vectors similarity. This local spatial
model, built upon a single scan, is then merged with the
global representation (accumulated segments from scans over
previous time instances). For the estimation of the error
distribution of the raw points, we adopt a more generic model
of uncertainty in which only the standard errors of the points
are available. Experiments with a real robot which produces
dense point clouds of indoor environments demonstrate that
the algorithm can extract important spatial relations required
to develop qualitative 3D maps.

The rest of the paper is organized as follows: A brief
literature review is provided in Section II. The uncertain 3D
grid and basic concepts are presented in Section III. Our
method is presented in Section IV and experiments on both
synthetic and real sensor data in Section V. Conclusions and
future work are presented in Section VI.



II. RELATED WORK

The majority of the work in the domain of mobile robot
mapping has focused on building spatial maps. As described
in [1], almost all algorithms related to robot mapping (e.g.,
[8], [9]) incorporate uncertainty in the problem description
thus leading to probabilistic mapping algorithms. Therefore,
a proper formulation of uncertainty in the sensor measure-
ments plays a vital role in all mapping algorithms.

Since the last few years, developing 3D spatial models has
gained major interest in the robotics field [4], [10]–[12]. Most
3D mapping techniques operate directly on the point cloud
and rely on segmentation and plane fitting techniques. In
many of these works, similar approaches on surface detection
and modeling have been followed. In [7], the authors use
techniques such as outlier removal, re–sampling, segmen-
tation and model fitting in order to reconstruct an indoor
environment, in particular a kitchen. Their data scans refer
to the whole environment, and their methods are applied over
this static dataset. In [13], the authors present an optimization
approach for segmenting planar regions of a grid based on
normal vector uncertainty. In [14], the incremental nature
of data acquisition has been considered. The authors use
an incremental update of their representation by taking into
account only the points that do not overlap with existing
models. In [5], an incremental segmentation algorithm for
3D points has been proposed. For every point in the new scan
its neighbours are found. If any of these points are already
assigned to a cluster, then the new point is also assigned to it.
If more than one clusters are candidates for assignment, then
a merging of these clusters is performed. In [15], [16], two
approaches for 3D semantic mapping of urban environments
are presented. The received point cloud is segmented and
planes are extracted. Their method though requires all points
as input, i.e., it is static. In [17], the surface extraction is
followed by classification. A set of hard-coded rules based
on the position and size of the surfaces is additionally used
to classify them as walls, floors, ceilings or doors.

In [18], 3D normal distribution transform has been pre-
sented which can be used for scan registration, localization
and surface analysis. The approach models the grid cells
using a normal distribution thus representing the surface
by smooth functions. This allows generic optimization algo-
rithms to be applied for scan registration. 3D-NDT has been
used for loop closure based on histograms of surface shapes.
Another application of 3D-NDT is surface analysis [18]
(boulder detection in construction sites), however it only
considers the surface smoothness within each cell of the grid
rather than extracting planes from the sensor observations.
In [19] a registration method for 3D mapping is defined based
on noisy planes with covariance estimation [20]. It focuses
mainly on registration of point clouds for 3D mapping
whereas we assume the point clouds to be already regis-
tered. The plane and the parameter covariance is extracted
directly from the point cloud, whereas our approach utilizes a
grid structure (reducing computational load) and propagates
uncertainties from the grid cells to the normals vectors.

Although our error modeling assumptions are more simplistic
compared to the above referenced work, however it allows
an online and incremental segmentation of surfaces.

III. UNCERTAIN 3D GRID

In our scenario, a mobile robot autonomously navigates in
an indoor environment without any prior knowledge about
the environment. The robot perceives the world through its
sensors by continuously scanning the environment. Each scan
produces one point cloud and as the robot navigates in the
environment a stream of point clouds is generated. The scans
can be overlapping, meaning that subsequent scans can refer
to the same areas in the environment. Starting from the first
scan, our method efficiently detects objects that span more
than one consecutive scans.

The robot stream consists of a sequence of regis-
tered 3D scans {S1, S2, . . ., St} arriving at time points
{t1, t2, . . ., tt}. Each scan St is a point cloud, i.e., a set
of 3D points, St = {p1,p2, . . . ,pi}. There is an inherent
uncertainty associated with the location of each point pi,
due to measuring device limitations. A common approach
for handling this uncertainty is to assume knowledge of the
underlying probability density function (PDF) that generates
this uncertainty. However, PDFs are usually introduced as
part of the modeling assumptions and roughly approximate
the actual distribution. Therefore, we adopt a more flexible
model of uncertainty where we assume that the standard
error in the position of every 3D point is available. In our
case, this error can be derived by the characteristics of the
measuring device. For the kinect device, the standard errors
along each axis have been analyzed in [21]. The error model
takes into account the increase in the uncertainty based on the
distance from the sensor. In this analysis, it has been shown
that the random error in the depth measurement increases
quadratically with the increase of the distance from the
sensor. Furthermore, the deviation along the beam axis is
always bigger than the deviation in the other two axes.

In order to incorporate the uncertainty in our method,
we introduce the concept of the uncertain point which is
represented as a tuple (pi, ε(pi)), where pi, ε(pi) ∈ R3 as
in [22]. In particular, pi = [xi, yi, zi]

T are the values in the
X,Y, Z dimensions, ε(pi) represents the errors in the point
which consists of three random variables with zero mean
and standard errors σx, σy, σz for each dimension. As shown
in [21], ε(pi) has been modeled to increase quadratically
based on the distance from the sensor.

Due to the huge amount of data that is accumulated over
time, it is inefficient to work upon the original raw data
points. Therefore, we partition the data space into a 3D grid
U consisting of cells {ui} of size ξ and we work on the grid
cells afterwards instead of the original raw data. The grid
cells are of the same size, however the grid itself is dynamic
and expands as new data scans are accumulated from the
robot stream. The number of points falling into a cell u
comprises the density of the cell, denoted by d(u). Since
some cells might contain only a small number of points, we



employ a density threshold τ to distinguish between dense
and noisy cells. For each cell we maintain a set of statistics.

Definition 1 (Cell statistics): Let u be a cell in the grid
and let {p1, . . . ,pn} be the set of uncertain points mapped
to u. The cell statistics contain the following entries:
• The linear sum of the points for each dimension,

L ∈ R3:
n∑
i=1

pi.

• The square sum of the points for each dimension,

S ∈ R3:
n∑
i=1

p2
i .

• The square sum of the errors for each dimension,

Ss ∈ R3:
n∑
i=1

ε(pi)2.

• The density of u, d(u) = n.
When a new point is added to a cell u, the cell statistics

are updated by summing up the point coordinates and errors
to the corresponding entries of the cell. Based on these
statistics, we compute the virtual center of the cell, Cu,
which is a random variable given by the current instantiation
of the center and the mean of the errors associated with the
points in the cell:

Cu =

n∑
i=1

pi/n+

n∑
i=1

ε(pi)/n (1)

Note that the error is a random variable with zero mean.
Therefore, E[ε(pi)] = 0. This means that by considering the
expected value of the center, the error factor is eliminated.
To count for the error factor, we estimate the square of the
Euclidean norm.

Lemma 3.1 (Virtual center of a cell): Let u be a cell in
the grid and let {p1, . . . ,pn} be the set of uncertain points
mapped to u. The virtual center of u is also a random
variable, denoted by Cu. The following formula holds:

E[||Cu||2] =

(
n∑
i=1

pi)2

n2
+

(
n∑
i=1

ε(pi))2

n2
(2)

Proof:
We start from Equation 1:

E[||C2
u||] = E[||

n∑
i=1

pi

n
+

n∑
i=1

ε(pi)

n
||2]

and evaluate the right hand side:

1

n2
[E[||

n∑
i=1

pi||2] +E[||
n∑
i=1

ε(pi)||2] + 2E[

n∑
i=1

pi
n∑
i=1

ε(pi)]]

1

n2
[E[||

n∑
i=1

pi||2]+E[||
n∑
i=1

ε(pi)||2]+2E[

n∑
i=1

pi]E[

n∑
i=1

ε(pi)]]

Since E[ε(pi)] = 0, the final term cancels out and the above
formula is simplified to the desired result (2).

The virtual center can be easily derived by the statistics
of the cell. So, Equation 2 can be re-written as:

E[||Cu||2] =
L2

d(u)2
+

Ss
d(u)2

(3)

It is essential to define a mechanism through which a
point is mapped to its corresponding cell in the grid. The
standard approach is to perform the point assignment based
on the Euclidean distance without considering the uncertainty
of the point or the virtual centers of the cells as shown in
Figure 1(a). In this paper, the uncertain point is mapped to
the virtual centers of the grid using the expected distance.
In Figure 1(b) we show the expected distance between a
point and the virtual centers of four grid cells by arrows of
different lengths. The uncertainties are represented by axes
aligned ellipses.

(a) (b)

Fig. 1. Mapping a point to the grid without- (a) and with- uncertainty (b)
(Points are represented by circles and virtual centers by squares.)

The expected distance between an uncertain point and the
uncertain virtual center of a cell is defined as follows:

Lemma 3.2 (Expected distance): Let u be a cell in the
grid containing the points {p1,p2, . . . ,pn} and let Cu be
its virtual center. Let pj be an uncertain point, such that it
has not been assigned to any cell in the grid. The expected
value of the square of the distance between pj and Cu is
given by:

E[||pj − Cu||2] = p2
j + ε(pj)2 +

(
n∑

i=1
p

i
)2

n2 +
(

n∑
i=1

ε(p
i
))2

n2 − 2pj

n∑
i=1

p
i

n (4)
Proof: The expected value of the square of the distance

is given by:

E[||pj − Cu||2] = E[||pj ||2]− 2E[pjCu] + E[||Cu||2]

Assuming pj and Cu are independent, it holds: E[pjCu] =
E[pj ]E[Cu], and thus:

E[||pj − Cu||2] = E[||pj ||2] + E[||Cu||2]− 2E[pj ]E[Cu]

Also, since pj is a random variable with expected value
its current instantiation and error ε(pj), it holds that:

E[||pj ||2] = (E[pj ])
2 + (E[ε(pj)])

2 − 2E[pj ]E[ε(pj)]

Also, since the mean of the error is zero E[ε(pj)] = 0:

E[||pj ||2] = E[pj ]
2 + E[ε(pj)]

2 = p2
j + ε(pj)

2 (5)

The term E[||Cu||2] can be computed as in Equation 2. Also,
it holds:

E[pj ]E[Cu] = pj

n∑
i=1

pi

n
(6)

Combining Equations (2), (5), (6), we reach to the desired
result of Equation (4).



The expected distance between a point and a cell can be
easily derived based on the value and the error components
of the point and the virtual center of the cell.

Equation 4 describes the analytical case, i.e., when the
raw data points of the cell are available. In our case, the
cell statistics are available so we can re-phrase Equation (4)
based on the cell statistics as follows:

E[||pj −Cu||2] = p2
j + ε(pj)

2 +
L2

d(u)2
+

Ss
d(u)2

− 2pj
L
d(u)

(7)
So, we can use Equation (7) to estimate the expected square
distance between a point and the virtual center of a cell. A
point is then assigned to the cell with the smallest expected
square distance.

IV. UNCERTAIN 3D CLUSTERING

For the robot, point clouds do not offer any direct informa-
tion about the spatial structure of the environment. To allow
for geometric interpretation and abstraction, the robot should
be able to process this data and extract patterns of spatial
information. Typically, surfaces are used for the description
of an environment; walls, doors, tables consist of (or can
be partitioned into component) surfaces. Thus, the patterns
we are focusing on in this work are surfaces. However, 3D
point clouds represent only a noisy sampling of surfaces that
exist in the real world and the explicit information about the
orientation and curvature of the surfaces is lost during the
sampling process. Normal vector estimation aims at restoring
this information for every sampled point by constructing a
vector that is orthogonal to the tangent plane of that point.
In order to do so, existing methods utilize techniques such
as the least square plane fitting [23], [24].

A. Normal vector estimation for grid cells

In our case, the notion of normal vector for points is
extended to grid cells and also it considers the uncertainty
of the points. For the normal vector computation, the cell
neighborhood is first defined.

Definition 2 (Cell neighborhood):
Let u be a cell. Let d be the depth parameter, d ≥ 1. The
neighborhood of u in depth d, denoted by Nd(u), consists
of: i) all cells u′ that are directly connected to u, and ii) all
cells u′′ for which there exists a path of cells 〈u1, u2, . . .,
ud〉, u1 = u, ud = u′′ such that ui+1 is directly connected
to ui, 1 ≤ i ≤ d.

The normal vector of a cell is estimated by computing
the total least square plane fitting its neighborhood. Recall
that each cell is represented in terms of a virtual center.
To account for the uncertainty of the virtual centers and
estimate its effect on the normal vectors, we employ a min-
max approach that computes the maximum variation in the
parameters of the plane. In particular, we perturb each virtual
center proportionally to its uncertainty based on the center
of the plane and calculate the best fitting plane in each case.
The variation in the plane parameters is a direct indicator of
the uncertainty in the normal vectors. The basic idea behind
this approach is graphically illustrated in Figure 2(a).

Definition 3 (Normal vector of a cell):
Let u be a cell and let Nd(u) be its neighborhood in depth
d. The uncertain normal vector of u, −→u , is a random variable
with an expected value given by the best plane fitting Nd(u)
and a deviation approximated by the min-max approach.

(a)

(b)

Fig. 2. Computing plane uncertainty with the min-max approach (a).
Representing uncertainty in the normal vectors (b).

An example of an uncertain normal vector is shown
in Figure 2(b). The normal vectors are shown as arrows,
whereas the uncertainty of a normal vector is represented by
a wire frame cone extruding from the virtual center.

B. Plane extraction

The plane extraction algorithm aims at extracting planes
from the grid by merging grid cells based on their normal
vector similarity and spatial vicinity. The pseudocode of the
algorithm is depicted in Figure 3. It takes as input the current
scan St at time point t, the global planes extracted up to time
point t− 1, the density threshold τ for the determination of
the dense grid cells and the orientation threshold φ which is
used to determine similar normal vectors. The output of the
algorithm is the global planes at time point t.

For every new scan the points in the scan are first mapped
onto the grid and cell statistics are maintained (lines 2–3).
The dense cells u, with d(u) > τ , are then extracted (line 4)
and used to create local planes, by merging grid cells based
on their spatial vicinity and normal vector similarity (line
5). The final step involves merging the local planes with the
global planes (accumulated over previous time point) to form
a consistent global map (lines 6–9) .

Below, we present the details of the local planes extraction
and the global planes extraction steps.



Algorithm Uncertain3DClustering()
Input: Global planes Θt−1,

Scan St,
density threshold τ ,
orientation threshold φ,

Output: Global planes Θt

begin
1. while (St) begin
2. Map St onto the grid
3. Maintain cell statistics for each cell u
4. Extract the dense cells Du w.r.t. τ ;
5. θt = extractLocalClusters(Du, φ);
6. if (Θt−1 = null) //the first scan
7. Θt = θt;
8. else
9. Θt = merge(Θt−1,θt, φ);
10. end;
end;

Fig. 3. The pseudocode of the Uncertain3DClustering() algorithm.

1) Local planes extraction: In this step, new surfaces are
created by starting with some random cell u ∈ Du. The
normal vector of the local planes l is initialized to the normal
vector of u and the algorithm tries to expand the plane l based
on the directly connected dense cells u′ and normal vector
similarity. The expansion is possible iff u′ and the local plane
l belong to similar surfaces, i.e. if −→l .

−→
u′ < φ (dot product)

where−→l and
−→
u′ represent the uncertain normal vectors of the

local plane and the candidate cell for merging, respectively.
Since −→l and

−→
u′ are uncertain normal vectors, we compute

their expected distance according to Equation (7). If the
addition is possible, the statistics of l are updated so as to
consider the effect of u. We maintain plane statistics similarly
to cell statistics (Definition 1). The procedure continues until
the local plane l cannot be further expanded (due to e.g., lack
of directly connected dense cells or due to the violation of
the orientation distance threshold φ). The algorithm restarts
from some other dense cell u′′ ∈ Du that has not been visited
yet and continues until all dense cells have been visited. The
output is a set of local planes {l1, l2, . . . , ln} ∈ θt as denoted
in Figure 3.

2) Global cluster extraction: The so far built global
planes Θt−1 should be updated according to the local planes
θt discovered on the current scan St. The update or merging
is done on the basis of i) the vicinity between the local
and the global planes, and ii) their orientation similarity.
Intuitively, a local plane is considered as a continuation of
a global plane if they are close to each other in the grid and
also if their corresponding surface orientations are similar.
A local plane might be absorbed by a single global plane or
by more than one global planes resulting in plane merge. If
neither of the two cases hold, the local plane might comprise
the start of a new global plane.

V. EXPERIMENTS

In this section, we experimentally evaluate our approach
on both synthetic and real data. On synthetic data, we

evaluate the notion of virtual centers and examine how the
uncertainty of the points effects the point distribution in the
cells and the normal vectors. On the real data, collected by a
mobile robot navigating in an unknown indoor environment,
we compare our method to the RANSAC algorithm [6] in
terms of cluster formation and normal vector estimation.

A. Results on synthetic data

Our synthetic dataset consists of three tangent surfaces that
form a table structure as shown in Figure 4. The purpose of
the experiment is to evaluate how accurately the grid captures
the real distribution of the points. Different levels of noise
are added to the 3D points and the distances between the
points and cell centers are calculated for both cases (fixed
grid centers and virtual centers).

(a) Noise = 0.1 (b) Noise = 0.2

Fig. 4. Our synthetic dataset under different levels of uncertainty/error in
the points.

In Figure 5, the average distances between the actual data
points and the virtual centers of the uncertain grid (blue
color) as well as with the fixed grid cell centers (red color)
are shown. We can see that the uncertain grid cells approach
represents the actual distributions of the points in a more
accurate manner than the fixed centers approach. For both
approaches, the quality of the grid approximation drops with
increasing uncertainty.
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Fig. 5. Distances between actual data and cell centers with respect to point
uncertainty/error.

For two different levels of uncertainty in the dataset (first
case 0.1, second case 0.2 ), the average standard devations
for all normal vectors were calculated. In the first case, the



deviation was measured to be equal to 3.82◦ while in the
second case it was equal to 7.34◦. The fact that the ratio
between the uncertainty on the points and on the normal
vectors for both levels of uncertainty is very close is an
indication that our min-max approach presented in Section IV
is correct.

B. Results on real data

We evaluate our approach in an actual scenario where a
mobile robot navigated in an indoor environment for more
than 200 s with an average speed of 0.3 meters per second.
The experimental environment consisted of several objects
(e.g. walls, doors, tables and chairs). Scans were collected
through a kinect device mounted on top of the robot. The
typical point cloud size from the kinect device is 300,000.
A size of 8cm was selected for the grid cell size and the
experiment was conducted on a 3 GHz AMD Phenom R©

II X4 with 8GB memory, running Ubuntu 12.04 and ROS
Fuerte.

1) Time efficiency: Figure 7(a) shows the time required to
process each incoming scan and generate an up-to-date map
of the environment. Figure 7(b) shows the number of planes
extracted over time. Depending on the size of the received
point cloud, each step can take from 0.07 up to 0.72 seconds
and the average time required per scan is 0.33 seconds.

In Figure 6, a detailed time analysis for a period of 45
seconds is presented where the processing time for each
step of the algorithm is presented. As shown in the above
mentioned figure, the most time consuming step is the
assignment of points to the corresponding 3D cells. This
is expected since for every new point, the distance between
the point and different virtual centers has to be calculated.
Another interesting point in this figure is that the total time
for the whole algorithm varies a lot. This happens due to the
field of view of the sensor which leads to different sizes of
point clouds.

Fig. 6. Time analysis for the algorithm and each module separately

2) Comparison with RANSAC: In Figure 9, the planes
found by our algorithm and a typical offline RANSAC im-
plementation are presented. In the RANSAC implementation,
the point clouds were accumulated over time and planes were
extracted when all point clouds had been received. In order
to evaluate the quality of our results, we compare the normal
vectors of our algorithm with those produced by RANSAC.
From the visual inspection of the image, it is clear that both
algorithms are able to extract the majority of the planes of the

environment. However, our algorithm was unable to detect
parts of the door in one specific region (dark red plane) which
is present in the results from RANSAC. The main reason for
this is the high uncertainty in the normal vectors in those
regions.

In order to measure how well our method compares to
RANSAC, we associate the planes of the two sets and
calculate the average normal vector difference between them.
The average normal vector distance for the detected 15 planes
in Figure 9 was found to be 5.96◦ which indicates that our
approach can extract accurate planes in an online fashion.

3) Normal vector uncertainty: In order to demonstrate
that our algorithm can model the uncertainty of the normal
vector for each grid cell accurately, we present the 3D
grid used for the RANSAC comparison showing the normal
vector uncertainty based on color in Figure 8. The dark
colored cells denote normal vectors with very low uncertainty
whereas the bright red colored cells correspond to normal
vectors with higher uncertainty. It can be seen that cells
which lie on the edges of planes or which are at higher
distance from the robot such as the segment on the top right
have higher uncertainty.

4) 3D map: The 3D map constructed by the robot is
presented in Figure 10. Different colors indicate different
surfaces. From the visual inspection of this map, it is
clear that the robot captured all essential properties of the
environment. Most parts of the ceiling and the floor belong to
the same clusters. However, certain parts of the same plane
are not always connected and are represented in different
colors since the algorithm utilizes the spatial vicinity as a
criterion for merging. In some corners and areas that the
robot turned, less number of clusters were detected since
those areas remained outside of the field of view of the
sensor.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we present an uncertain 3D grid concept
for the problem of mapping. The proposed structure takes
into account the inherent uncertainty of the sensor points
for assigning the points to the grid and furthermore, it
introduces the concept of uncertain 3D cells for modeling
uncertainty at the cell level. The uncertainty of the grid cells
is propagated to the surfaces, which are also modeled as
uncertain entities. Our method maintains the grid online and
thus all the necessary measures can be derived online. We
couple the grid with a fast stream clustering algorithm and
we are able to derive and maintain in an online fashion the
surface clusters as new scans are accumulated over time. Our
experiments show that the uncertain 3D grid formulation is
able to efficiently detect planes and model uncertain areas in
the environment.

As future work, different directions are planned to be
investigated. Firstly, experiments and comparisons need to
be done with other techniques. Secondly, an evaluation of
our method in outdoor environments where sensor noise
is usually higher and the environment is less structured is
planned. Finally, a different approach that eliminates the



(a) Time per scan (b) Number of clusters over time

Fig. 7. Cluster Formation & Time analysis

Fig. 8. Uncertainty of normal vectors. Red color means higher uncertainty

grid structure and represents the environment through virtual
centers that are allowed to freely move around following the
distribution of the data will be examined.
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(a) Planes extracted by the RANSAC algorithm (b) Planes extracted by our algorithm

Fig. 9. Extracted planes by the two methods

(a) (b)

Fig. 10. The 3D map of the environment under two different perspectives


