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Abstract—Nowadays, urban mobility plays an important role
in modern cities for city planning, navigation, and other mobility
services. Taxicabs are vital public services in large cities that
are taken by passengers thousands of times every day. Reducing
the number of vacant vehicles on the streets will help service
providers to raise drivers’ incomes, reduce energy consumption,
optimize traffic efficiency, and control air pollution problems
in large cities. Since drivers do not have enough information
about the location of passengers and other taxis, most of them
might drive to the same area. Due to the lack of passenger
information, they often end up without picking up any passengers
while there are highly demanded areas in their neighborhood.
To address these issues, machine learning techniques can be
applied to analyze mobility data acquired from the IoT sensors
and help companies to organize the taxi fleet or minimize the
wait-time for both passengers and drivers in the city. In this
paper, an LSTM-based deep sequence learning model is applied
to forecast taxi-demand in a particular urban area in a smart
city. For this purpose, points of interest (POIs) in the city are
extracted from Google Maps and integrated with the mobility
data sources. Given a real-world dataset and two evaluation
metrics, we observed that taxi-demand in each urban area can
be influenced by external factors such as neighborhood locations
and the POIs located in that area. The results show that the
proposed method outperforms the vanilla LSTM model and has
less average error than baseline methods in terms of the Mean
Squared Error (MSE) and Symmetric Mean Absolute Percentage
Error (SMAPE).

Index Terms—Urban Mobility Prediction, Machine Learning,
Deep Learning, LSTM, POI

I. INTRODUCTION

A smart city is an urban area that uses different types
of IoT sensors to collect data and enhance the quality and
performance of urban services. Advances in IoT sensor and
wireless communications such as Global Positioning System
(GPS), Global System for Mobile Communications (GSM),
and Wi-Fi have provided a new way of communicating with
running vehicles while collecting relevant information on their
status and location. Most of the taxi vehicles are now equipped
with these kinds of technologies, producing a huge amount of
rich Spatio-temporal information [4]. One of the most funda-
mental questions about smart cities is how to build prediction
models to make better decisions in the future. Accurate taxi
demand prediction can help service providers to reallocate
taxis to highly-demanded areas, reducing both the waiting

time of passengers and the vacant time of taxis. Thereby,
increased taxi utilization could raise drivers’ incomes, reduce
energy consumption, optimize traffic efficiency, and control air
pollution problems in large cities as in [5], [12], [15]. Since
drivers do not have enough information about the location
of passengers and other taxis, most of them might drive to
the same area while there are higher demand areas in their
neighborhood. Passengers also prefer to quickly find a taxi
whenever they are ready for pickup. To address these issues
a regression technique is presented in this paper to forecast
the number of pickups in a particular urban area in the next
short-horizon time. For this purpose and regarding to the first
law of Geography which says, ”everything is related to other
things but near things are more related than distant things”, the
effect of points of interest (POIs) and mobility data sources are
considered in each area of Porto. Furthermore, the sequential
nature of taxi data needs a mechanism to store and remember
the relevant information in future. Therefor, in this paper we
use Long Short-Term Memory (LSTM) which is one of the
best deep sequence learning methods for processing time-
series data. The rest is organized as follows. Section II focuses
on the related works. Section III presents the POIs (Points
Of Interest) data set and the LSTM-based prediction model.
Section IV introduces the Porto data set, then investigates the
correlation between POIs and the taxi data and describes the
experimental results. Finally, the most important findings of
the research are highlighted in Section V.

II. RELATED WORK

Most of the studies in urban mobility prediction split into
two categories. The first group focuses on building learning
techniques to forecast the mobility patterns in the future.
Existing solutions of this group can be roughly classified into
model-based and deep learning-based methods. Model-based
methods such as ARIMA [14], Gaussian mixture [6], and
linear regression [16] are simple to understand and implement,
but they are not able to capture the complex spatial and
temporal dependencies of taxi demand. In contrast, deep
learning models can solve these issues and offer more powerful
expressiveness for taxi demand prediction which is essentially
considered as a time series processing problem [15]. The
second group attempts to investigate the effect of external



factors on the actual mobility patterns in a smart city. For this
reason, POIs, weather conditions, and events are considered
as external factors to add more relevant information to the
learning process in prediction models. Lately, many traditional
and Deep Neural Network (DNN) learning methods have been
successfully used for processing sequential data and prediction
tasks in a smart city as in [1]–[4], [8], [10], [19]. Recurrent
neural networks (RNNs), special types of DNN, are popular
models that can process sequential data very well. The idea
behind RNNs is to store relevant parts of the input and use this
information while predicting the output in the future. Unlike
feed-forward neural networks that predict the output only
based on the current input, RNNs contain memory in which
some important information from the past inputs can be stored.
The LSTM is a type of RNNs and a widely used deep sequence
model in many applications such as time series predictions
which can handle the spatial information and consider time
dependencies for future uses. Furthermore, training time and
performance of DNN-based solutions are extremely better than
Non-DNN-based techniques [2], [9], [11], [13]. Contrary to
most of the existing works replying solely on taxi-stand’s own
demand pattern, we enrich the data of each stand with the
information of POIs closed to that stand. Furthermore, While
most of similar works have divided the city in some static areas
[2], [3] our method uses directly the taxi-stands information
based on the traffic configuration of Porto city.

III. METHODOLOGY

This section is divided into three parts. First, the points
of interest are defined and extracted. Next, two-dimensional
(2D) time series are represented with a mathematical notation,
and finally the LSTM deep sequence model is presented and
evaluated.

A. Points of Interests

POI stands for Point of Interest, a kind of external factors,
which describes popular places (e.g. bars, restaurants, shop-
ping centers, etc.) in a city that might be interesting locations
for visitors. Based on the first law of Geography, people may
take a taxi or use the public transportation system to visit
nearby locations as their pick-up and drop-off points. In this
work, the geographical information of Porto POIs is extracted
from the Google Maps service in order to be used as an
external factor for the mobility prediction problem. Google
Maps stores over 100 million places and their information such
as location, contacts, user ratings, popular times, addresses,
phone numbers, etc. In order to find POIs around a specific
location, the GPS Coordinates and a radius is given to the
Google API and it returns the nearby places corresponded
to the given radius. There is also a parameter called ”types”
which can filter out only the types of places that are needed
to find. For each taxi stand, a dynamic zone is defined as a
circular area on the map. The radius of each circular zone
is the distance between the current stand and the closest
taxi station while the center of the circle indicates a taxi
station. Around ninety types of places such as bar, restaurant,

hospital, coffee shop, and school are listed to be searched
in each zone. By doing so, the POI dataset is created for
popular places in Porto. Each record consists of a unique id,
name, address, coordinates and popular time to represent a
place. In addition to this information, the id of the central
taxi stand is assigned to the POIs located in the same zone
and consequently, these zones are reshaped by assigning new
locations or POIs. However, some circular areas have overlap,
meaning that the POI-DATASET has redundancy. For this
purpose the POI-DATASET is cleaned by removing duplicate
records. Algorithm 1 shows the procedure of extracting POI
data from the Google Maps.

Algorithm 1: Finding POI in Porto
Input: Taxi-Stands Data TS , Business-Types BT
Output: POI-DATASET
for each stand i in TS do

Radius[i] ← min(distance(i, j for each stand j in
TS and i!=j))
Coordinates[i] ← coordinate(stand i)

for each b in BT do
for each t in TS do

p ← search places by coordinate
(Coordinates[t], Radius[t], BT[b])
POI ← populartimes.get id(API-KEY, P)

Add POI to POI-DATASET
Clean POI-DATASET //remove duplicate records

Both Taxi and POI datasets have a sequential structure
because they strongly depend on location and time order. In
order to apply sequence learning models, these data must be
transformed and converted from their original format to time
series format. The best aggregation period is 30 minutes based
on the average waiting time at each taxi-stand [4]. Therefore,
the whole year is divided into 17520 timestamps that each
value indicates the number of pickups at each timestamp in
Ps . Respectively two parallel time series are generated from
the taxi data and POI in which the length of each time series
(L) is 17520 according to Algorithm 2.

Algorithm 2: Converting POI-Dataset to time series
Input: POI-DATASET PD
Output: POI Time series Ps(Len (TS), L)
// TS: Taxi-Stands , L: Length=17520
for each poi in PD do

visitlist ← convert POI to time series
s ← index of closest taxi stand to the POI
aggregate (Ps(s,:), visitlist)

return Ps

B. Mathematical Notation and Data Transformation

Let define S = {s1, s2, . . . , sN} and Xs =
{Xs,0,Xs,1, . . .Xs,t}, where S is the set of taxi-stands
and Xs is a discrete-time series that models the taxi-demand



for stand s. When the aggregation period is 30 minutes,
Xs,i represents the number of pick-ups in stand s at ith

timestamp. The goal is to build a deep sequence model that
predicts the demand Xs,t+1 for the next time point t + 1
at taxi-stand s where Xs,t is available. Traditional learning
approaches use the demand history of the stand Xs for the
prediction in a taxi station. In addition to these historical
data, POI data will be considered in this work to improve the
training process in the prediction model. In the following,
the procedure of creating the POI time series is described
by aggregating all points of interest around each station.
Like taxi data, let assume POIs = {Ps1, Ps2, . . . , PsM} and
Psm = {ps,0,ps,1, . . . ,ps,t}, where POIs is the set of M
points of interest in the neighborhood of taxi stand s and
Psm is the corresponding time series for point of interest
m which has been assigned to stand s. Then ps,i represents
the number of people visiting Psm at timestamp i and the
dynamic zones are reshaped by assigning each POI to the
closest station and aggregating their time series in the Ps

(number of people who are visiting the POIs around taxi
station s). Finally the Ps and Xs are concatenated to create
the 2D time series XPs. Fig. 1 illustrates a sample of the
above-mentioned time series. For example, the number of
pickups at timestamp 17519 is 1, while 4 people are visiting
the points of interest in the nearby taxi stand s.

C. POI-LSTM Deep Sequence Model

The POI-LSTM stands for points of interest with LSTM,
an extension of the well-known Long Short-Term Memory
(LSTM) [17], which is a special kind of a recurrent neural
network (RNN). The LSTM unit includes a cell state and a
gate mechanism such that the cell state remembers values
over arbitrary time intervals and the three gates regulate
the information flow for each cell. When the LSTM model
takes the time series data, the cell architecture stores the
data for a specific period to train the model with back-
propagation through time. Basically, the LSTM-based models
use the logistic activation functions during the training process.
Intuitively, the input gate decides which value flows into the
cell, the forget gate controls the extent to which value remains
in the cell and the output gate controls the extent to which the
value in the cell is used to compute the output activation of
the LSTM unit. There are connections into and out of the
LSTM gates that a few of them are recurrent. The weights of
these connections, which need to be learned during training,
determine how the gates operate. However, the POI-LSTM
deep sequence model is trained for each taxi-stand s by using
the 2D time series which mathematically notated by XPs in
the Algorithm 3. Since the time-series data are different for
each taxi stand, the model is separately trained and tested for
all taxi-stands, and the final results are calculated by averaging
all output values.

IV. EXPERIMENTS AND EVALUATION

We perform the experiments on the historical data acquired
from the Porto city, Portugal which is described in Section

Algorithm 3: POI-LSTM Deep Sequence Model
Input: Taxi-Stands TS, Xs, Ps
Output: POI-LSTM Prediction Model
for each stand s in TS do

XPs← Concatenate(Xs, Ps)
Train s, Test s← Split(XPs)
Build and train LSTM with Train s
Execute prediction model with Test s
Evaluate the POI-LSTM model for stand s

return average(the evaluation metrics of all stands)

Fig. 1. 2D time series XPs for a specific station s

IV-A. The experimental setup and evaluation metrics are
presented in the Sections IV-B and IV-C respectively. Finally,
the prediction model is tested on two versions of the Porto
dataset in Section IV-D and the results are compared with
baseline methods.

A. Data Description

In this work, the trajectory data of a taxi company operating
in the city of Porto, a medium-sized urban area in Portugal,
was used as the case study. Due to lack of information, taxi-
drivers in Porto waste a lot of time and energy to pick up a
customer, consequently there is a huge competition between
both companies and drivers to improve their services and
obviously enhance their income. The existing regulations force
the drivers to choose a specific taxi stand out of the 63 existing
stations in the city and wait for the next service immediately
after the last drop-off. The Porto dataset includes 1,710,670
taxi trips that continuously collected from 442 taxis operating
through a taxi dispatch central, using mobile data terminals
installed in the vehicles [14]. Each trip is represented with
eight attributes in which ”CALL TYPE” may contain three
possible values A, B, and C that respectively means dispatched
from the central service, demanded directly on a specific stand,
and demanded on a random street by handshaking. ”ORIGIN
STAND” contains a unique identifier for the taxi stand when
the corresponding ”CALL TYPE” is equal to B, otherwise,
it assumes a NULL value. When the GPS data stream is
complete, ”MISSING DATA” is False, and whenever a tech-
nical problem is caused to miss one or more locations, the
corresponding ”MISSING DATA” is set by TRUE value. Each
pair of coordinates in ”POLYLINE” represents the longitude
and latitude of a location over a trajectory path.

B. Experimental Setup

Considering the ”CALL TYPE” attribute, two versions of
the dataset are created for the experiments. D1 is the small
dataset including all trips departing from a specific taxi-stand.



This dataset contains 817.861 records and can be used in
the prediction model that can forecast the short-term demand
for specific taxi-stands. Around fifty percent of taxi trips are
taken on the streets or by central service, and their information
cannot be easily omitted. Therefore, the D2 version contains
all records of the clean data. In this case, for those trips that do
not start from a taxi-stand (i.e., those with a ”CALL TYPE”
equal to ‘A’ or ‘C’) the distance between their pickup location
and all 63 taxi-stands is calculated, and the corresponding
”ORIGIN STAND” value is replaced by assigning the closest
taxi-stand id. By doing so, we define 63 dynamic zones where
taxi stations are the centers of these regions. Fig. 4 shows the
distribution of D1 and D2 at each taxi stand. In order to find
the optimal POI-LSTM model, different parameters are used
as follows:

• Layers: from range (1, 4) with step 1
• Neurons: from range (10, 300) with step 10
• Look back value: from range (2, 24) with step 1 where

each step is 30 minutes.
• Epoch and batch size: from a list of possible values in

range (10, 15, 20, 25, 50, 100, 200, 500, 1000)
• Dropout: from range (0.1, 0.9) with step 0.1

After testing the aforementioned parameters, we observed
that the optimal model has one hidden layer including 200
neurons per layer. The best look-back value is five as it
raises the best value of SMAPE. The AdamMax and tanh
are selected for the gradient descent optimization algorithm
and activation function respectively because they cause the
best SMAPE values compared to other functions. Additionally,
the best values for epoch and batch size are set as 25
and 100 respectively. To prevent overfitting in POI- LSTM
model, the dropout technique is set to 0.7 to randomly drops
units and their connections from the neural network during
the training part. Using different time intervals we showed
that the POI-LSTM achieves the best performance when 30-
minutes timestamp is set rather than for example 60 minutes.
Therefore, 30 minutes is chosen as the horizon time for the
prediction problem. We use the first 70% of each data set for
training, the remaining one is used in the test phase.

C. Evaluation Metrics

Evaluation measures in time series prediction represent the
capability of a model for the prediction task. Two typical
metrics are used in this work to compare all methods: Mean
Squared Error (MSE) and Symmetric Mean Absolute Percent-
age Error (SMAPE) which are given by equations (1) and (2).
The SMAPE is more meaningful than the MSE because the
proportion values are more comprehensive than squared errors.
The constant value c in corrected equation (2) is a user-defined
value which prevents high error just in case the real demand
is 0 and the predicted one is non-zero.

MSEs =
1

T

T∑
i=1

(
Ys,i − Ŷs,i

)2
(1)

SMAPEs
=

100%

T

T∑
i=1

∣∣∣Ys,i − Ŷs,i

∣∣∣
|Ys,i|+

∣∣∣Ŷs,i

∣∣∣+ c
(2)

Where Ys = {Ys,0, Ys,1, .., Ys,t} and Ŷs ={
Ŷs,0, Ŷs,1, .., Ŷs,t

}
are real and predicted demand values of

stand s by the regression model. T indicates the length of
time series which is 17520 in this case. The aforementioned
formulas refer to the error rate at each taxi stand, and they
need to be averaged over all taxi-stands as follows:

MSE =

∑N
i=1 MSEi

N
(3)

SMAPE =

∑N
i=1 SMAPEi

N
(4)

Where N is the number of taxi-stands.

D. Results and Discussion

To find points of interests in Porto, a list of ninety business
types such as museum, school, hospital was explored. After
extracting and removing redundancy, 12851 distinct places
were remained, but the Google Maps does not store popular
times (based on visits to a place) information for all places.
Considering this restriction, only 2051 distinct points of inter-
ests have the popular time information and more than 10000
places are not usable to form the POI time series in this case.
For instance, 432 bars were found in Porto but only 122 of
them include popular time list which represent the number of
people who visit this place during the day and weekdays. POIs
are automatically extracted from the Google Maps and they
may not reflect the exact number of visitors because it does
not record everything, but interestingly the number of POI
including popular times data and the number of places without
this information have the same trends in each urban area. In an
urban area, spatial and temporal features are two main mobility
characteristics that reflect the geographic location and regu-
larities in the time dimension respectively [14]. Concerning
the spatial dimension, the correlation between the number of
pickups and visitors has been shown in the Fig. 2. This graph
visualizes the spatial distribution of the total number of visitors
and pick-ups in each zone from 01/07/2013 to 30/06/2014.
The blue color indicates the number of people who visit POIs
while the red line is used to represent the number of pickups
in a specific zone. The results show that, generally the number
of visitors are more than the number of pickups in most of
stations. On the other hand, in a some stations the difference
between the number of visitors and pickups is not significant,
meaning that the POIs information is not able to precisely
reflect the correlation between visitors and using taxicabs by
them. For instance Fig. 2 shows that taxi stands 7 and 42 have
less number of visitors than the number of pickups during the
whole year in Porto while stand 15, the central train station,
has more than 100,000 pickups during the whole year which
is almost equal to the number of visitors. One of the reasons



for the irregular fluctuation in spatial distribution in Fig. 2 can
be due to the lack of popular times in POIs data.

Fig. 2. Number of visitors and pickups in each area during the whole year

Fig. 3. Number of Pickups and POIs over 24 hours (temporal distribution)

The temporal distribution of both visits and pickups for POI
and taxi data have been represented in Fig. 3. The red pie
chart shows the temporal distribution of pickups and the blue
indicates the same distribution for visitors. The whole day
is divided into 24 time-interval from 0 to 23 in a clockwise
direction around the pie chart. The number of visitors and
pickups are aggregated during the whole year at each time-
interval and their statistics are separately represented using five
concentric circles in the pie charts. By doing so, the temporal
correlation between both time series data can be shown like
the spatial correlation in Fig. 2. It is seen from Fig. 2, the red
pie chart, that the number of pickups has the same distribution
from midnight to 4 am, then it is increased until 8 am. It can
be guessed that people usually go out from home at around 9
am meaning that they may take a taxi for moving in the city.
Consequently, the number of pickups has a marked deference
at 9 am and reaches to a high peak at 10 am. After fluctuation
briefly between 10 am and 7 pm, the number of pickups is
decreased until midnight. Approximately the same trend can be
observed for the POIs during the 24 time-interval of the days.
All in all, spatial and temporal correlation between historical
taxi data and POIs, and concatenating them as a 2D time series
can be a meaningful input for the deep sequence learning
model.

The network is trained using both D1 and D2 dataset with
the same parameters described in the Section IV-B and the
POI dataset. Three traditional models such as linear regression
( LR), random forest (RF), and XGboost regression are used

Fig. 4. Number of pickups in D1 and D2 at each stand (spatial distribution)

for comparing with the LSTM-based models. Both traditional
models and vanilla LSTM were trained using the historical taxi
data. Generally, the vanilla LSTM model outperforms tradi-
tional prediction models. The neighborhood-augmented LSTM
(NA-LSTM) [18] is an LSTM-based deep sequence model
that consider a global neighborhood threshold k for all taxi-
stands to improve the performance of the LSTM model. Table
I depicts the predictive performance of the traditional models
and the LSTM-based models for data set D1, containing trips
starting from an actual taxi-stand. In this table, the model is
fitted with 30 minutes timestamp. Table II summarizes the
results for data set D2, containing all trips from the cleaned
data set and after mapping the trips that do not start from a
stand to their closest stand. The MSE and SMAPE metrics
in Tables I and II show that, the proposed POI-LSTM Model
has the smallest error values for both D1 and D2 where again
the prediction problem was fitted for 30 minutes timestamp.
As indicated, the Random forest regression has less error in
training process, but this error is significantly increased when
the model is tested for unseen data. This clear difference
between train and test performances meaning that the models
overfits, instead of learning from data. POI-LSTM has the least
error over unseen data and these results are much better when
the D1 dataset is used for the experiments. A possible reason
is the assignment of the trips to their closest taxi-stands in
dataset D2. Fig. 5 shows the SMAPE error rates for training
and testing processes over dataset D2. As an extreme case, the
most popular stand, stand 15 corresponding to the main train
station, has the highest error. A possible explanation is that
such a stand is very difficult to model with a single model
and one might need to consider different models for different
contexts such as season based, weekdays vs weekends etc. In
general, POI-LSTM model has higher improvement when it is
run on D2 data set and experimental results demonstrate the
superior performance of the proposed model as compared to
the existing approaches.

V. CONCLUSION AND FUTURE WORKS

In conclusion, an LSTM-based deep sequence model was
used in this study to predict taxi demand in a smart city.
It was found that the proposed model can provide more
accurate results compared to the baseline models for the
motioned purpose. The model was able to utilize the additional
information of external factors to improve the learning process.



TABLE I
PERFORMANCE OF THE DIFFERENT MODELS ON D1

Model TrainMSE TestMSE TrainSMAPE TestSMAPE
LR 1.61 1.76 24.37 24.52
RF 0.38 1.66 16.83 24.25

XGBoost 1.39 1.59 23.90 23.91
LSTM 1.66 1.84 18.37 18.54

NA-LSTM 1.49 1.68 17.32 17.64
POI-STM 1.26 1.41 17.12 17.25

TABLE II
PERFORMANCE OF THE DIFFERENT MODELS ON D2

Model TrainMSE TestMSE TrainSMAPE TestSMAPE
LR 4.21 5.99 30.78 31.23
RF 0.71 5.50 18.49 31.03

XGBoost 3.60 5.45 30.47 30.51
LSTM 4.16 6.66 27.03 27.22

NA-LSTM 3.84 6.44 25.88 26.07
POI-STM 2.57 5.27 24.73 25.08

Given the historical taxi data, we observed that taxi-demand
in each area can be influenced by neighborhood locations and
the POIs located in that area. POI data set includes useful
information for the peak hours, but for the off-peak hour we
need more external information from other resources because
the performance of prediction models are tightly connected
to the input features. Therefore, considering more relevant
features such as events and climate conditions for improving
the performance of the model can be done as a future work.
In this paper, the main focus was on investigating the effects
of the external factors to improve the basic prediction model.
Another solution can be improving the learning algorithm and
building a more accurate prediction model. Decision making
by inappropriately trained algorithms may unintentionally dis-
criminate the results and the algorithms may capture and prop-
agate ethnicity related biases. Therefore fundamental machine
learning principles can be used to prevent discrimination issues
for achieving fairness in taxi demand problem.
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